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Highlights
 Auditory neurophysiological processing of sound matures from ages 3-8 years.
 The frequency following response, a subcortical index of sound processing, becomes faster, more 

robust, and more consistent with age. 
 Growth curve modeling reveals individual differences in auditory maturation are evident overall 

and over time throughout early childhood. 
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Abstract

Objective: During early childhood, the development of communication skills, such as language and 
speech perception, relies in part on auditory system maturation. Because auditory behavioral tests engage 
cognition, mapping auditory maturation in the absence of cognitive influence remains a challenge. 
Furthermore, longitudinal investigations that capture auditory maturation within and between individuals 
in this age group are scarce. The goal of this study is to longitudinally measure auditory system 
maturation in early childhood using an objective approach. 

Methods: We collected frequency-following responses (FFR) to speech in 175 children, ages 3-8 years, 
annually for up to five years. The FFR is an objective measure of sound encoding that predominantly 
reflects auditory midbrain activity. Eliciting FFRs to speech provides rich details of various aspects of 
sound processing, namely, neural timing, spectral coding, and response stability. We used growth curve 
modeling to answer three questions: 1) does sound encoding change across childhood? 2) are there 
individual differences in sound encoding? and 3) are there individual differences in the development of 
sound encoding? 

Results: Subcortical auditory maturation develops linearly from 3-8 years. With age, FFRs became faster, 
more robust, and more consistent. Individual differences were evident in each aspect of sound processing, 
while individual differences in rates of change were observed for spectral coding alone. 

Conclusions: By using an objective measure and a longitudinal approach, these results suggest 
subcortical auditory development continues throughout childhood, and that different facets of auditory 
processing follow distinct developmental trajectories. 

Significance: The present findings improve our understanding of auditory system development in 
typically-developing children, opening the door for future investigations of disordered sound processing 
in clinical populations. 

Keywords:
Development; Childhood; Auditory processing; Neurophysiology; Longitudinal; Growth curve modeling.

Abbreviations
Comparative Fit Index (CFI), fast Fourier transform (FFT), frequency following response (FFR), 
fundamental frequency (F0), Generalized Linear Model (GLM), Intraclass Correlation Coefficient (ICC), 
Model 1 (M1), Model 2 (M2), Model 3 (M3), root-mean-square (RMS), Root Mean Square Error of 
Approximation (RMSEA), sound pressure level (SPL), Tucker-Lewis index (TLI).
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1. Introduction
During childhood, growth is pervasive, both physically and physiologically. Communication skills, such 
as language and speech perception, expand rapidly. By age 2, most children can combine words into 2-
word phrases and up to age 4, sentence length grows an average of one word per year. Then, from 3 to 8 
years of age, a child’s lexicon grows exponentially, from ~ 150 words to ~23,000 words (Macias and 
Twyman, 2011; Templin, 1957). Concurrently, sentences become more complex, with the addition of  
prepositions, adjectives, and adverbs by age 5 (Macias and Twyman, 2011). The development of these 
skills relies in part on the development of the auditory system. Anatomically, peripheral structures (e.g., 
cochlea) reach maturity in infancy (Abdala and Keefe, 2006; Eggermont and Moore, 2012; Lavigne-
Rebillard and Pujol, 1987), while central auditory pathways (e.g., brainstem to cortex) follow a more 
protracted trajectory through late childhood and even adolescence (Moore and Linthicum, 2007). How the 
auditory system develops functionally, however, is an open question. Quantifying this maturation is 
important for understanding differences in speech and language mastery, and ultimately, for identifying 
disorders of language development. 

One line of research suggests that functional maturation is tethered to structural maturation of the auditory 
system. That is, maturation of distinct auditory perceptual skills follows trajectories roughly 
corresponding to development of the auditory structures presumed to support these skills (Moore, 2002; 
Sanes and Woolley, 2011). For example, frequency resolution becomes adult-like by the first year of life 
(Spetner and Olsho, 1990; Werner, 1996), which is also around the time the cochlea is structurally mature 
(Eggermont et al., 1996; Ponton et al., 1992). In contrast, perception of temporal cues (e.g., temporal 
integration) does not reach adult-like levels until ages 6-10 years (Hartley et al., 2000; Jensen and Neff, 
1993; Litovsky, 1997; Wightman et al., 1989), possibly due to prolonged neuronal development within 
the central auditory system (Moore and Linthicum, 2007). 
 
An alternative hypothesis as to why there are multiple trajectories of functional maturation is that some 
auditory behavioral tasks call upon fundamental mechanisms of “hearing” (i.e., cochlear function) that 
reach maturity earlier on, while other tasks recruit additional cognitive processes that continue to develop 
through adolescence. Indeed, auditory perceptual tasks range in their auditory-system demands and the 
extent to which cognitive processes are recruited. For example, many auditory behavioral tests require 
sustained attention (Moore et al., 2010), raising the possibility that the different tests are not indexing 
differential development of auditory processes, but rather the extent to which these processes engage 
attention. Further complicating the picture is the fact that cognitive processes undergo their own 
development in early childhood, so it is also possible these behavioral measures are in fact measuring 
maturation of cognitive function. To examine auditory development in childhood without the confound of 
cognitive factors, an objective approach is needed (Sanes and Woolley, 2011). 

The frequency following response (FFR), a neurophysiological measure of electrical events generated 
within and throughout the auditory pathway (Bidelman, 2015; Chandrasekaran and Kraus, 2010; White-
Schwoch et al., 2017), serves as an objective index of auditory processing because it does not depend on 
attention or volition (Krizman and Kraus, 2019; Skoe and Kraus, 2010). Because it does not actively 
engage cognition, the FFR can investigate auditory maturation without the confounds of cognitive 
processing. Moreover, eliciting the FFR to complex sounds, such as speech, provides rich insights into 
distinct aspects of auditory system function, including the fidelity with which acoustic features are 
processed and the health of the auditory system irrespective of sound engagement (Krizman et al., 2020). 
These aspects of auditory function are indexed through measures derived from the FFR, including neural 
timing, spectral coding, response stability, and nonstimulus activity (Krizman and Kraus, 2019; Skoe and 
Kraus, 2010). Examining these aspects simultaneously and objectively would enable a more complete 
investigation of sound processing, as each offers a perspective into the many ways the nervous system 
engages with sound. 



5

For example, two aspects of auditory function, neural timing and spectral coding, reflect the auditory 
system’s representation of temporal and frequency information, respectively, both of which are relevant 
for communication (Krizman and Kraus, 2019; Skoe and Kraus, 2010). Fluctuations in the temporal and 
spectral components of speech inform a listener of what was said, where the sound originated, and who 
spoke the message (Carré et al., 2017). The shape and speed of these fluctuations can also signal 
emotion—such as a speaker’s tone or intonation—and comprise the building blocks of speech, like 
phonemes or syllables (Frick, 1985). 

In contrast, response stability reflects the auditory system’s ability to reliably encode a message. During a 
recording session, thousands of stimulus trials are presented to a participant to generate an averaged 
response waveform. By correlating subsets of these trials, response stability captures how much the 
response does or does not change over time, and is therefore thought to reflect the reliability of the 
auditory system in encoding stimulus features (Hornickel and Kraus, 2013; Krizman and Kraus, 2019). 
Stable auditory processing is believed to facilitate the sound-to-meaning connections associated with 
language learning and learning to read; unstable auditory processing is a hallmark of children with 
language disorders (Hornickel and Kraus, 2013; Otto-Meyer et al., 2018).

Finally, nonstimulus activity, captured during the period of silence between stimulus presentations, 
provides an index of baseline neural activity when not evoked (Krizman and Kraus, 2019); that is, it 
measures nonstimulus activity thought to reflect background neural and non-neural noise. Background 
activity levels are influenced by experience: they are higher in children from socioeconomically 
impoverished backgrounds (Skoe et al., 2013) and they are lower in expert athletes, even when 
controlling for myogenic artifact (Krizman et al., 2020). Higher levels of nonstimulus activity may hinder 
communication skills, such as the ability to perceive speech in noisy environments (Anderson et al., 
2012). 

It is currently unknown how these properties of sound encoding develop in childhood. Mapping the 
maturational course of these various neurophysiological measures would provide insight into the 
multifaceted development of auditory function, and therefore could inform clinical diagnostics and 
interventions, and ultimately guide clinical decision-making.

Moreover, most of what is known about auditory system development has been identified using a cross-
sectional approach. Age-related differences in characteristic response components (N1 and P1) of cortical 
auditory evoked potentials are evident in childhood (Wunderlich and Cone-Wesson, 2006) and 
adolescence (Ponton et al., 2000; Sharma et al., 1997). Subcortical responses, measured using the FFR to 
speech, also differ between age groups and have been observed in comparisons of infants (Anderson et 
al., 2015; Jeng et al., 2010), young (3-5 yo) and school-age children (8-12 yo) (Johnson et al., 2008), and 
across the lifespan (Skoe et al., 2015). However, one assumption of cross-sectional research is that 
between-individual differences also reflect within-individual changes over time. Tracking within-
individual changes requires a longitudinal design, yet few have employed this approach to examine 
auditory neurophysiological development, especially in childhood.  

Here, we map auditory neurophysiological maturation during childhood using an objective index of 
auditory processing and a longitudinal approach. The following research questions were asked: 
1) Does auditory encoding of speech change across childhood development? 
2) Are there individual differences in speech-sound encoding?
3) Are there individual differences in the development of speech-sound encoding over time?

To answer these questions, we measured FFRs to speech in a cohort of children (n = 175) beginning at 
age 3 or 4 years and continuing each year for up to five years until they were 7 or 8 years old, culminating 
in 463 test points. Analysis of the longitudinal data was performed using growth curve modeling, which 
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allowed us to determine general developmental changes, individual differences, and individual 
differences in rates of change. We hypothesized that distinct aspects of auditory processing continue to 
develop between 3 and 8 years of age and that the different aspects themselves, as well as their 
development, vary across individuals. Specifically, we predicted that that as children develop, 
neurophysiological responses to speech become faster, more robust, more consistent, and less noisy, with 
variation on these measures seen across individuals and across age.  

2. Methods
2.1 Participants
One hundred and seventy-five (n = 175) children, recruited from the Chicago area, were included in the 
study. Participants were monolingual English speakers with no history of a neurological disorder. All 
passed a screening of peripheral auditory health (normal otoscopy, Type A tympanograms, and distortion 
product otoacoustic emissions  6 dB sound pressure level (SPL) above noise floor from 0.5 to 4 kHz) 
and demonstrated normal click-evoked auditory brainstem responses (wave V latency < 6.00 ms in 
response to a click presented at 80 dB SPL at 31 Hz). Children provided verbal assent and parents and/or 
legal guardians provided written consent. All experimental procedures were approved by and carried out 
in accordance to recognized standards set by the Northwestern University Institutional Review Board. 
Participants were monetarily compensated for their time. 

2.2 Testing
Two age cohorts were tested at an initial visit: 3-year-olds (n = 82) and 4-year-olds (n = 93); following 
this initial test visit, children returned to the lab every 12 months for up to 5 years (Table 1). To achieve 
greater specificity in the growth curve model, data were analyzed longitudinally with respect to age at test 
rather than year of study. Thus, although all analyses considered age as a continuous variable, for 
illustrative purposes, FFR data have been split into age groups in the figures. 

[Table 1 here]

2.3 Electrophysiology
FFRs evoked by the speech syllable [da], (Skoe and Kraus, 2010), were collected using a BioSEMI 
Active2 recording system and auditory brainstem response module. Recordings were performed in an 
electrically-shielded and sound-attenuated booth (IAC Acoustics, Bronx, NY, USA), and lasted ~30 
minutes. The [da], presented in isolation, was played at alternating polarities to the right ear at 80 dB SPL 
through electromagnetically-shielded insert earphones (ER-3A, Etymotic Research, Elk Grove Village, 
IL, USA).

The speech syllable [da] is a 170 ms voiced, six-formant stop consonant with a fundamental frequency 
(F0) of 100 Hz that was constructed using a Klatt-based synthesizer at 20 kHz (Figure 1A). During the 
consonant-vowel transition (i.e., the /d/ to /a/), the lower three formants linearly change (F1: 400-720 Hz, 
F2: 1700-1240 Hz, F3: 2580-2500 Hz), while the F0 and upper three formants remain steady (F0: 100 Hz, 
F4: 3300 Hz, F5: 3750 Hz, F6: 4900 Hz). During the vowel portion of the stimulus (i.e., the /a/), the F0 
and six formants remain steady. 

During the recording session, children sat in a recliner chair and watched a movie of their choice. To 
encourage compliance, the left ear was unoccluded so the child could hear the soundtrack of the movie (< 
40 dB SPL in sound field). At least 4200 stimulus trials were presented to obtain 4000 artifact-free trials. 
Electrodes were placed at Cz for active (non-inverting), right and left earlobes for unlinked references 
(inverting), and 1 cm on either side of Fpz for ground (CMS/DRL). All offsets were kept below 50 mV. 
Within the BioSEMI ActiABR module for LabView 2.0 (National Instruments, Austin, TX, USA), and 
per the hardware’s limitation, responses were online filtered from 100-3000 Hz (6 dB/octave roll-off) and 
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digitized at 16.384 kHz. To open the high pass to 0.1 Hz, offline amplification of 6 dB/octave was 
performed in the frequency domain in MATLAB (The Mathworks, Inc., Natick, MA, USA) using custom 
programs. Responses were then bandpass filtered to the frequency region of interest (70-2000 Hz, 
Butterworth filter, 12 dB/octave roll off, zero phase shift), epoched from -40 to 210 ms (stimulus onset at 
0 ms), baseline-corrected relative to the prestimulus period, and artifact rejected at  35 V. To 
emphasize the stimulus envelope, responses to the alternating polarities were added (Aiken and Picton, 
2008). 

2.4 Frequency following response parameters
The FFR is an auditory evoked potential that offers insights into various aspects of neural sound 
processing (Krizman and Kraus, 2019; Skoe and Kraus, 2010). Four neural parameters of interest, neural 
timing, spectral coding, response stability, and nonstimulus activity were included in this investigation 
(Figure 1). 

[Figure 1 here]

2.4.1 Neural timing
Neural timing was examined by measuring peak latencies of the FFR, which occur at periodic intervals 
that roughly correspond to the periodicity of the fundamental frequency (F0) and are thought to reflect 
phase locking to the stimulus (Krizman and Kraus, 2019; Skoe and Kraus, 2010). Latencies were 
identified in Neuroscan (Neuroscan Edit 4.5, Compumedics, Charlotte, NC) using a local maximum and 
minimum detection algorithm followed by manual verification using a blind procedure outlined in 
(Anderson et al., 2010a). Thirty eight peaks and troughs were chosen, and for statistical analyses, a 
composite timing measure was calculated by averaging the peak and trough latencies within the 20-160 
ms response region. 

2.4.2 Spectral coding
The scalp-recorded FFR robustly represents the fundamental frequency (F0) and harmonics of speech 
(Greenberg et al., 1987; Krishnan et al., 2004, 2005; Russo et al., 2004; Xu et al., 2006). To determine the 
frequency representation within the FFR, a fast Fourier transform (FFT) was applied to extract the 
spectral amplitudes of the fundamental frequency (F0) and its integer harmonics up to 1000 Hz within the 
5-170 ms portion of the response. A 16,384 point FFT was computed with an 82.5 ms ramp, and 
amplitudes were calculated over 40 Hz bins centered at the F0 and integer harmonics. For statistical 
purposes, a composite measure was created by averaging all spectral amplitudes from the fundamental 
frequency (F0) through the tenth harmonic (H10). 

2.4.3 Response stability
To measure response stability over the course of the recording session, first, two sub-averages of the FFR 
response were calculated. Each sub-average comprised 2000 sweeps, 1000 of each stimulus polarity, so 
that the odd epochs of each polarity were used to create one sub-average and the even epochs of each 
polarity were used to create the other sub-average (Hornickel and Kraus, 2013). The sub-averages were 
then correlated to compute a Pearson product-moment correlation coefficient (r). For statistical purposes, 
data were Fisher (z) transformed.

2.4.4 Nonstimulus activity
To quantify the non-evoked neural activity of the FFR, the root-mean-square (RMS) amplitude of the 40-
ms interval preceding the stimulus was calculated. 
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2.5 Data monitoring and outlier checking
Prior to statistical analyses, data were examined for outliers. Particular care was taken to remove as few 
outliers as possible. Data points were only excluded if 1) there was a technical error in collection, or 2) if 
> 3 standard deviations (SD) above/below mean. Because these neurophysiological measures are distinct, 
an outlier for one neurophysiological measure was not necessarily an outlier for the other 
neurophysiological measures within that year. In addition, if a participant’s data was excluded at one time 
point (e.g., at age 3), but had data from other time points within 3 SD (e.g., at ages 4 and 5), these values 
were included. In all, 10 out of 463 (2.16%) data points were removed for neural timing analyses, 16 out 
of 463 (3.46%) for spectral coding, 10 out of 463 (2.16%) for response stability, and 19 out of 463 
(4.10%) for nonstimulus activity. Across all measures and all years (n = 463 test points), 26 subjects had 
one outlier datapoint, 4 subjects had two outlier datapoints, 2 subjects had three outlier datapoints, and 4 
subjects had four outlier datapoints. 139 subjects had zero outlier datapoints. Please see Table 1C for 
more information regarding outlier exclusion by year of study.

For both spectral coding and nonstimulus activity, values were converted to nanovolts instead of 
microvolts due to small variance estimates. Structural equation models, like all methods derived from 
Generalized Linear Model (GLM), are invariant to linear transformations; results are the same regardless 
of metric unit (i.e., if analyzed in nanovolts, microvolts, etc.). Thus, results for these measures are 
reported in nanovolts instead of microvolts; to convert the growth curve model estimate values from 
nanovolts to microvolts, means can be divided by 1x103 and variance terms by 1x106. 

2.6 Statistical analyses – growth curve modeling
For each neurophysiological measure (i.e., neural timing, spectral coding, response stability, and 
nonstimulus activity), a series of growth curve models were run to identify the functional form that best 
represented within- and between-individual changes (Please see Figure 2 for path diagram reflecting the 
structure of growth curve modeling). The series of growth curve models were run through a multi-level 
structural equation model where each individual’s age at test (e.g., Age3 = 3.57 years) was used as the 
basis coefficient for estimating change over time. In other words, each participant’s precise age at test 
(e.g., 3.47) is loaded into the model as their “age” for the year they visited the lab, and predictions in the 
neural measure are made for that exact age. In addition to accounting for this variance in age, the growth 
curve models also account for variance in time between an individual’s test points (e.g., 12 months to 20 
months, etc). Included in the models were estimates of intercept (I) and slope (S) means and variances. 
Constraining intercept values to 1 allowed us to determine the neural measure’s initial status (i.e. at age 
3), while constraining slope values to age of test allowed us to determine linear changes in growth over 
time. Model comparisons were performed using Chi-Square Difference Tests based on log likelihood 
values and scaling correction factors obtained within the MLR estimator (Satorra and Bentler, 2010). All 
analyses were run in Mplus (Muthén and Muthén, 2017). P values less than .05 were considered 
significant. 

[Figure 2 here]

The series of growth curve models were implemented as follows. First, we ran a full growth curve model 
to examine individual differences within our dataset, as well as individual differences with respect to 
development (i.e., rates of change). In this model (Model 1), all parameters were freely estimated: 
intercept mean, slope mean, intercept variance, intercept slope, intercept and slope mean covariance, and 
residual variances. Next, we ran a simplification of Model 1 to estimate the overall change in the 
respective neurophysiological measure over time. In this model (i.e., Model 2), fixing slope variance to 
zero allowed us to test the null hypothesis that all individuals develop at the same rate. Finally, we ran an 
even simpler model, Model 3, by fixing slope mean and slope variance to zero to test the null hypothesis 
that there are no changes in neurophysiological development over time.
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To answer our research questions we systematically excluded growth curve parameters in the series of 
models (M1, M2, M3) and then performed model comparisons (M1 vs M2, M2 vs. M3). Comparing 
models M2 vs M3 allowed us to determine whether or not improvement in fit was attributable to overall 
change over time (i.e., growth curve parameter: slope mean), while comparing M2 vs M1 allowed us to 
determine whether the improvement in fit is attributable to individual differences in rates of change (i.e., 
growth curve parameter: slope variance). 

2.7 Measures of model fit
To determine standardized measures of model fit, the series of growth models were run a second time 
through a traditional structural equation model where fixed ages were used (e.g., Age3 = 3.0, for all 
individuals) as the basis coefficients for estimating change over time. These indices included the Root 
Mean Square Error of Approximation (RMSEA), the Comparative Fit Index (CFI), and the Tucker-Lewis 
index (TLI). For a description of these indices please see (Hooper et al., 2008). For RMSEA, values less 
than 0.04 are considered to be an “excellent” fit, less than 0.07 a “good” fit, and less than 0.1 a “fair” fit 
(Steiger, 2007); for CFI and TLI, models with an “excellent” fit are greater than 0.95 (Hu and Bentler, 
1999). 

By running the growth curves through the multi-level structural equation model (with age at test as the 
basis coefficient) and traditional structural equation model (with fixed age as the basis coefficient) we can 
1) determine the fit of the models with greater age specificity to determine precise estimates, and 2) 
compare the models using standardized and widely-used “goodness of fit” indices.

2.8 Statistical analyses – other
For each neurophysiological measure, we examined the Intraclass Correlation Coefficient (ICC), , which 
reflects the proportion of variance in the outcome variable explained by each model’s total variance. In 
other words, the ICC allows us to calculate the amount of variation unexplained by model predictors and 
how that relates to overall unexplained variance. In addition, to evaluate the collinearity of the 
neurophysiological measures, we performed a series of Pearson Correlations controlling for age. Finally, 
to investigate the influence of sex on auditory neurophysiological development, growth curve analyses 
were run including sex as a time-invariant factor. Because sex was not a significant predictor of growth 
for the four neurophysiological measures, these results are excluded from the main text and reported in 
the Supplementary Appendix. Of note, including sex as a factor revealed overall sex differences in each 
of the four neurophysiological measures, in that females had FFRs that were faster, more robust in 
representing spectral information, more consistent, and less noisy compared to their male peers. As sex 
differences are not the main focus of this paper, results are provided in the Supplementary Appendix as 
well. For a recent report of developmental sex differences in subcortical auditory processing, please see 
(Krizman et al., 2019).

3. Results
3.1 Summary
Fit statistics and parameter estimates for the series of growth curve models are provided in Table 2 and 
Table 3, respectively. Estimates for the best fitting growth curve model are reported; for all growth curve 
parameter estimates, please see Supplementary Appendix Table A.1. Fit statistics for neural timing, 
spectral coding, and response stability growth curve models reflected appropriately fitting models. For 
neural timing and response stability, the second model (M2) fit best, suggesting these neurophysiological 
measures improved over time: as children aged, neural responses became earlier and more consistent. For 
spectral coding, the first model (M1) fit best, suggesting frequency representation also improves over time 
(spectral coding became stronger with age), and that there were individual differences in rates of change. 
We observed relatively high Intraclass Correlation Coefficient (ICC) values, , for neural timing ( = 
0.731) and spectral coding ( = 0.670), a moderately-sized ICC value for response stability ( = 0.426), 
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and a relatively low ICC value for nonstimulus activity ( = 0.294). Given high ICC values indicate high 
similarity between values from the same measure, and low ICC values reflect little to no similarity 
between values from the same measure, these results suggest that neural timing, spectral coding, and 
response stability are reliable indices of their respective facet of sound processing, and therefore, how 
sound processing changes over time. 

[Table 2 & 3 here] 

3.2 Neural timing development 
Model comparisons of the latency growth curves show M2 had the best fit (Table 2). By testing whether 
or not the addition of the mean slope parameter significantly improved the growth curve (M2 vs M3), we 
found the overall model fit improved (Chi square difference test: M2 vs M3, p < 0.01) and had an overall 
“fair” fit based on traditional “goodness of fit” indices (M2: RMSEA = 0.103, CFI = 0.847, TLI = 0.903). 
In contrast, the addition of the slope variance parameter (M1) did not significantly improve the model 
(Chi square difference test: M1 vs M2, p = 0.285).
 
The model comparisons for Model 2 affirms two of our three hypotheses with respect to neural timing: 1) 
auditory encoding of neural timing changes across childhood (Mean slope: Estimate = -0.018, SE = 0.005, 
p < 0.001) and 2) individual differences exist in neural timing (Intercept variance: Estimate = 0.037, SE = 
0.005, p < 0.001). Because freely estimating slope variance did not improve the model (M1 vs M2), our 
dataset does not support the notion that there are individual differences in rates of change in neural 
timing.

Model 2’s parameter estimates (Table 3) indicate the average latency value of the neural response was 
90.744 milliseconds at age 3 (Mean intercept: Estimate = 90.744, SE = 0.030, p < 0.001) and became 
significantly earlier each year by 0.018 milliseconds. Please see Figure 3 for graphical representation of 
neural timing development. 

[Figure 3 here]

3.3 Spectral coding development 
Model comparisons of the spectral coding growth curves show M1 had the best fit. The addition of the 
mean slope parameter significantly improved the growth curve (Chi square difference test: M2 vs M3, p < 
0.04), as did the addition of the slope variance parameter (Chi square difference test: M1 vs M2, p = 
0.006). Model 1 had an “excellent” fit based on traditional “goodness of fit” indices (M1: RMSEA = 0.04, 
CFI = 0.970, TLI = 0.979). 

The model comparisons affirms our three hypotheses with respect to spectral coding: 1) auditory spectral 
coding changes across childhood (Mean slope: Estimate = 0.318, SE = 0.151, p = 0.035), 2) individual 
differences in spectral coding exist (Intercept variance: Estimate = 44.414, SE = 11.633, p < 0.001), and 
3) individual differences in the development of spectral coding exist (Slope variance: Estimate = 0.691, 
SE = 11.633, p < 0.001). Each individual’s spectral coding starting level is related to developmental 
changes over time (latent variable covariances of intercept & slope: Estimate = -4.167, SE = 1.796, p = 
0.020), such that lower spectral coding values at age 3 are associated with greater change in spectral 
coding over time each year. 
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Model 1’s parameter estimates indicate the average level of spectral coding was 0.017 microvolts at age 3 
(Mean intercept: Estimate = 17.463, SE = 0.848, p < 0.001) and became significantly larger each year by 
0.003 microvolts. Please see Figure 4 for graphical representation of spectral coding development.

[Figure 4 here]

3.4 Response stability development
Model comparisons of the response stability growth curves show M2 had the best fit. By testing whether 
or not the addition of the mean slope parameter significantly improved the growth curve (M2 vs M3), we 
found the overall model fit improved (Chi square difference test: M2 vs M3, p = 0.03) and was 
“excellent” based on traditional “goodness of fit” indices (M2: RMSEA = 0.00, CFI = 1.00, TLI = 1.055). 
In contrast, the addition of the slope variance parameter (M1) did not significantly improve the model 
(Chi square difference test: M1 vs M2, p = 0.178). 

Similar to neural timing, the model comparisons affirms two of our three hypotheses with respect to 
response stability: 1) auditory response stability changes across childhood development (Mean slope: 
Estimate = 0.016, SE = 0.008, p = 0.043) and 2) there are individual differences in response stability 
overall (Intercept variance: Estimate = 0.025, SE = 0.004, p < 0.001). Because freely estimating slope 
variance did not improve the model (M1 vs M2), our dataset does not support the notion that there are 
individual differences in response stability rates of change.

Model 2’s parameter estimates indicate the average response stability value was 0.597 at age 3 (Mean 
intercept: Estimate = 0.597, SE = 0.045, p < 0.001) and became significantly larger each year by 0.016 
units. Please see Figure 5 for graphical representation of response stability development.

[Figure 5 here]

3.5 Nonstimulus activity
Model comparisons of the nonstimulus activity growth curves show M1 had the best fit, despite being a 
poorly fitting model overall (M1: RMSEA = 0.066, CFI = 0.576, TLI = 0.703). 

[Table 4 here]

3.6 Relationships between neural measures
To determine collinearity between neural measures, we ran a series of Pearson’s correlations (Table 4). 
Controlling for age, weak relationships were found between nonstimulus activity and neural timing (r = -
0.086), neural timing and response stability (r = -0.217), and nonstimulus activity and spectral coding (r = 
0.158). Moderate relationships were observed between neural timing and spectral coding (r = -0.400), 
spectral coding and response stability (r = 0.656), and nonstimulus activity and response stability (r = -
0.446). No strong correlations (r > .7) were evident among the neural measures. 

4. Discussion
4.1 Auditory neurophysiological development evident in childhood
Using the novel application of growth curve modeling, we show that the neural processing of speech 
continues to mature within individuals over the course of childhood: neurophysiological responses 
became earlier, more robust, and more stable. In addition to providing longitudinal evidence of central 
auditory system development throughout this age range, these results demonstrate there are individual 
differences in neural processing of various sound ingredients, and that for some of these ingredients (i.e., 
spectral coding), there are individual differences in how neural development unfolds over time. 
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These findings align with cross-sectional evidence showing neurophysiological development of the 
auditory system. Using the FFR, age-related differences in neural processing of timing and frequency 
information have been observed in infants, 1 to 3 months of age (Jeng et al., 2010) and 3 to 10 months of 
age (Anderson et al., 2015), as well as children, ages 3-5 and 8-12 years (Johnson et al., 2008). In 
addition, changes in timing and spectral coding, as well as response stability and nonstimulus activity 
occur across the lifespan (Krizman et al., 2019; Skoe et al., 2015). These studies show evidence of 
multiple maturational timelines for measures of subcortical processing, and that development of these 
measures continues through late childhood (ages 3-8). Through our use of a different speech stimulus and 
a large longitudinal sample, the present findings reinforce these cross-sectional observations, yet for the 
first time show developmental changes are evident between- and within-individuals. 

4.2 Auditory neurophysiological changes parallel perceptual development 
These findings also align with psychophysical evidence showing gradual auditory perceptual 
development over the first decade of life (Sanes and Woolley, 2011). For example, temporal integration, 
one aspect of temporal processing and the process in which information is summed over time, develops 
through age 6 when tested with experimental paradigms of duration discrimination (Jensen and Neff, 
1993), gap detection (Wightman et al., 1989), and the precedence effect (Litovsky, 1997). Here, we 
examined temporal processing through a measure of neural timing, and found that as children age, 
processing of sound becomes faster (i.e., earlier latencies). Nervous system timing (latency) is inversely 
related to white matter density (Eggermont and Moore, 2012), and latency changes are likely to reflect a 
rapid increase of axonal myelination throughout the auditory system (Moore and Linthicum, 2007). Given 
the parallel between these two lines of research, and the objectivity of the FFR approach, our results 
corroborate the psychophysical evidence. Importantly, we show that sensory processing develops without 
relying on behavioral tests whose interpretation can be complicated by cognitive influences, such as 
attention. 

Also in line with the psychophysical literature is our finding that spectral coding changes over the course 
of early childhood. In terms of auditory perceptual indices of spectral processing, frequency resolution 
matures early on, reaching adult-like levels by 6 months of age (Spetner and Olsho, 1990). In contrast, 
more complex spectral processing matures later in childhood. For example, frequency discrimination, a 
task that requires one to detect differences in frequency presented successively, matures around age 10 for 
low frequency tones (Maxon and Hochberg, 1982). Tasks requiring detection of frequency and amplitude 
modulations, cues that are important for speech perception, follow a relatively prolonged timeline, such 
that maturation continues beyond age 12 (Banai et al., 2011). Task-related differences in maturational 
trajectories illustrate how some perceptual tests draw on fundamental cochlear mechanisms (i.e., 
“hearing”) that matures early in life, while others involve auditory and non-auditory centers that follow a 
longer developmental course. Our finding that spectral coding develops throughout childhood suggests 
that this measure could be an index of complex sound processing that offers objectivity into the 
maturation of frequency representation. 

While neural timing and spectral coding have perceptual analogs, response stability does not. Response 
stability is thought to be an index of how replicable the nervous system represents a stimulus over time 
(Hornickel and Kraus, 2013; Krizman and Kraus, 2019), reflecting both the brain’s endurance and 
reliability within a testing session. Although no behavioral indices exist to draw a direct comparison, 
theoretically, response stability might inform our knowledge of “internal noise”, or within-individual 
variability. In Signal Detection Theory, one assumption is that “internal noise” can increase variance in 
perceptual indices (MacMillan, 2002). For example, infants are considered “broadband listeners” with 
more internal noise; over time, internal noise decreases and infants tune in to specific sound features 
rather than rely on a Gestalt representation (Saffran et al., 2007; Werner, 1996; Werner et al., 2012). After 
infancy, internal noise in the auditory system continues to decrease from childhood to adulthood across a 
range of tasks, including intensity discrimination (Buss et al., 2006, 2009) and detections of tones in noise 
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(Allen and Wightman, 1994). In the present study, we see responses become more consistent over time. 
This finding could reflect 1) the gradual dissipation of internal noise within childhood, 2) that neural 
encoding of stimulus features is more equivalent across trials, or 3) both. Future research is needed to 
further understand this neurophysiological parameter, and how developmental changes in response 
stability may be tied to changes in behavior (e.g., reading disorders (Hornickel and Kraus, 2013)). 
Furthermore, while response stability may grossly reflect “internal noise”, the possibility of other noise 
sources influencing this measure remains. Future research is necessary to disentangle the contribution of 
neural from non-neural noise of this parameter specifically, as well as the other measures examined in this 
study.

The growth curve model examining the development of nonstimulus activity fit poorly, perhaps due to a 
few reasons. First, a “poor fit” of a growth curve might be driven by noisy data, where between- and 
within-individual changes are too variable to be modeled statistically. Such a result could arise because 
the measure of interest reflects both internal and external noise. Indeed, the ICC for nonstimulus activity 
was relatively weak ( = 0.294), suggesting this neurophysiological measure reflects more variability 
and/or noise in any given observation relative to the other neurophysiological measures. One other 
possible contributor to a poorly fitting model is multiphasic growth (i.e., more than one growth phase). 
Unfortunately, to determine whether or not a sample follows a multiphasic growth pattern requires a large 
number of subjects, one which exceeds the present sample size. Future research should examine how 
nonstimulus activity relates to general indices of neural and non-neural noise and should extend the 
sample size to a number sufficient to determine if nonstimulus activity development follows a 
multiphasic—rather than linear–growth trajectory. 

4.3 Investigating neurophysiological development using growth curve modeling
For many years, neurophysiologic development of the auditory system was assessed using the auditory 
brainstem response, which is believed to be adult-like by about 18 months (Jerger and Hall, 1980). This 
led to the assumption that the auditory system was stable by the second year of life. However, many 
investigations in the past few decades have revisited the notion of auditory system development, revealing 
maturation through at least young adulthood (Krizman et al., 2019; Ponton et al., 2000; Skoe et al., 2015). 
While these studies made considerable headway in redefining the notion of auditory system development, 
they did so using a cross-sectional approach, leaving the possibility that between-individual changes 
differ from within-individual changes. Few examinations have adopted a longitudinal approach to 
understand within-individual changes in the auditory system, and whether or not there are individual 
differences in rates of change. In the present study, we use a large sample to provide evidence that 
reinforces these cross-sectional examinations, yet shows for the first time that auditory changes are 
evident within individuals. 

Neurophysiological data were analyzed using growth curve modeling, a statistical approach that is 
burgeoning in the fields of social, psychological, and behavioral sciences due to advancements in 
technology and computing. Although the benefits of growth curve modeling are many, the number of 
neurophysiological investigations employing this approach are few. Our novel application of this 
statistical approach merits a discussion of its advantages and limitations. 

One advantage of growth curve modeling is that it permits the inclusion of all data points collected on an 
individual. This is in contrast to traditional statistical approaches, such as repeated measures analysis of 
variance, which require a complete dataset for included individuals and therefore excludes those that do 
not meet this requirement. In growth curve modeling, each data point adds value to a model, even if data 
was collected at only one time point (i.e., cross-sectional) or a subset of those time points (such as years 
1, 2, and 3 in a 4-year study). Though technically not longitudinal data, individuals with one time point of 
data add value to the growth curve model by informing the distribution of that individual’s age range that 
would otherwise not be known. However, while these “cross-sectional” data points add value to a growth 



14

curve, it is important to note that the relative value is small in comparison to individuals with multiple 
time points of data collected; in our case, those with five years’ worth of data added the most value to the 
model. 

A second advantage of growth curve modeling is the ability to characterize the functional form of 
developmental changes, such as linear or non-linear trends. Here, we see that the growth in our 
longitudinal data was linear, rather than cubic or quadratic. In other words, developmental changes 
occurred steadily and gradually over time. This result is novel, especially considering the non-linear 
developmental path of many skills and behaviors (e.g., language acquisition) (Bates et al., 1995). Though 
we do not suspect linear changes to continue throughout the lifespan (cf. Skoe et al. 2015) it is interesting 
to think of this age range as a linear developmental period.

A third and final advantage of growth curve modeling is the statistical determination of individual 
differences and individual differences in rates of change. Here, we see that there are individual 
differences across the parameters, suggesting auditory processing of neural timing, spectral coding, and 
response stability are likely explained by differences in genetics, environmental factors, etc. Moreover, 
individual differences with respect to change were evident in spectral coding development, meaning there 
is more than one maturational path in this age range. In contrast, we did not see individual differences in 
rates of change for neural timing or response stability measures. This is not to say that individual 
differences do not exist; rather, our dataset does not support this result. Future studies are needed to 
investigate differential rates of change with respect to neural timing and response stability in childhood 
auditory development. 

One drawback of growth curve modeling is the necessity of a large sample, which for developmental 
investigations might prove unrealistic. While we provide results that were sufficiently powered, a greater 
number of individuals would be needed to investigate how, and why children develop at distinct rates. To 
address the question of whether or not the neural measures reflect distinct processes in our data, Pearson 
correlations were run to determine collinearity. No strong correlations (r > .9) were observed between the 
neurophysiological measures at any age group, suggesting these indices reflect distinct features of 
auditory nervous system function. 

4.4 Links between auditory development & communication skills
Throughout childhood, the auditory system plays a large role in the acquisition of many communication 
skills. For example, reading involves mapping sounds to meaning, while speech perception requires 
parsing relevant from irrelevant information within an incoming auditory stream. Strength of auditory-
neurophysiological sound processing is linked to a number of these communication skills. For example, 
enhancements in temporal and spectral coding are related to school-aged children’s ability to hear in 
noisy environments (Anderson et al., 2010b, 2010a). For preschool-aged children, development of the 
fundamental frequency of speech (one frequency included in our spectral coding measure) tracks with 
improvements in hearing in noise (Thompson et al., 2017). Literacy and reading competencies are linked 
to neural stability (Centanni et al., 2014; Hornickel and Kraus, 2013), auditory system timing (Ahissar et 
al., 2000; Banai et al., 2009) and processing of detailed acoustic features such as consonants (Kraus et al., 
1996; Tallal, 1980). 

To understand the relationship between neural processing of sound and clinical disorders, a critical first 
step is to determine how these auditory neurophysiological measures mature in a typically developing 
population, with the ultimate goal to improve clinical diagnostics and interventions. Given the links 
between auditory function and communication, an objective approach like the FFR, could provide a more 
reliable method for identification and diagnosis of developmental disorders related to reading and 
language, including developmental dyslexia and specific language impairment. For example, as an 
objective index of distinct facets of auditory maturation, the FFR could reveal aberrant patterns of 
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development that suggest delays earlier. Future studies should examine deviations in auditory 
development in clinical populations, and/or how abnormal auditory system development could contribute 
to disordered sound processing.

4.5 Future directions
Participants in this study were monolingual English speakers from similar socioeconomic backgrounds, 
and therefore reflect a small subset of the broader population. Future research should investigate the 
influence of second language experience and socioeconomic standing on the neurophysiological 
development of the auditory system. This is especially important as previous research shows spectral 
coding, response stability, and nonstimulus activity vary along socioeconomic dimensions in adolescents 
(Skoe et al., 2013) and based on language experience (Krizman et al., 2012; Skoe et al., 2017). Second, 
future research should investigate how performance on language or auditory tests track with objective 
auditory system development, as indexed by the FFR, to determine behavioral consequences of 
neurophysiological maturation. A third line of future research is the investigation of auditory maturation 
prior to 3 and 4 years of age. While a few studies have demonstrated auditory system development 
evolves over the first two years of life, a gap in the literature between 10 months and 3 years of age 
remains. A systematic, longitudinal examination is needed to confirm these maturational changes and to 
fully understand auditory development from the onset. 

5. Conclusion
Through a large longitudinal dataset analyzed through growth curve modeling, we observe the sharpening 
of neurophysiological processing of sound within individuals in childhood: neural timing became faster, 
spectral coding stronger, and response stability more consistent over time. These findings align with the 
perceptual and cross-sectional investigations of auditory development, and show that auditory maturation 
extends into late childhood using an objective and longitudinal approach.
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Tables and Figures

Table 1. A) Participant descriptive statistics broken down by age at test and year of test of the 
longitudinal study. B) Descriptive statistics for test-retest duration for each year of longitudinal study. C) 
Number of outliers for each neurophysiological measure that were excluded from growth curve analyses. 
Please see Methods for more information.

A) Participant descriptive statistics
Age at test 3yo 4yo 5yo 6yo 7yo 8+

Count (n) 82 141 95 70 48 27
Average age 

(years) 3.47 4.49 5.51 6.52 7.49 8.54
SD (years) 0.27 0.29 0.29 0.30 0.29 0.40

Min age (years) 3.01 4.01 5.02 6.01 7.01 8.01
Max age (years) 3.94 4.97 6.00 6.96 7.95 9.29

Females (n) 42 63 40 30 22 11
Males (n) 40 78 55 40 26 16

Year of test
Year 

1 Year 2 Year 3 Year 4 Year 5
Count 175 115 85 62 26

Females 81 51 36 28 12
Males 94 64 49 34 14

Average age 
(years) 4.02 5.12 6.21 7.32 8.36

SD 0.62 0.63 0.65 0.65 0.54

B) Test-retest 
duration (months)

Year 
1-2

Year 
2-3

Year 3-
4

Year 4-
5

Average 12.90 12.77 12.45 11.39
SD  2.00 1.78 1.24 1.66
Min 7.79 10.64 11.04 6.67
Max 20.99 22.14 18.33 13.50

Median 12.25 12.29 12.12 11.86

C) Outlier count 
(n)

Year 
1 Year 2 Year 3 Year 4 Year 5

All 
years

% of 
total 

sample
Neural timing 2 2 3 3 0 10 2.16

Spectral coding 4 1 4 3 4 16 3.46
Response stability 7 0 1 2 0 10 2.16

Nonstimulus activity 8 4 3 2 2 19 4.10
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Table 2. Fit statistics for the series of growth models for each neurophysiological measure. Shaded cells 
reflect fit statistics from the traditional structural equation model where the basis coefficients for 
estimating change over time were fixed (e.g., 3.0 for all 3-year-olds). Measures of model fit included 
Root Mean Square Error of Approximation (RMSEA), Comparative Fit Index (CFI), and Tucker-Lewis 
index (TLI). Unshaded cells represent model comparisons from the multi-level structural equation model 
where the basis coefficients for estimating change over time corresponded to age at test (e.g., 3.15 years, 
3.87, etc.). The multi-level structural equation model comparisons (M1 vs M2 and M2 vs M3) were 
performed using Chi-Square Difference Tests based on log likelihood values (H0) and scaling correction 
factors obtained within the MLR estimator (SCFMLR), and were computed based on the difference test 
scaling correction (cd) and the Chi-Square difference test (TRd) values. Please see Methods for more 
information.

 M1 M2 M3
NEURAL TIMING
Parameters 6 4 3
RMSEA 0.109 0.103 0.116
CFI 0.844 0.847 0.796
TLI 0.891 0.903 0.876
--2LL 154.367 153.759 146.458
    H0 154.298 152.649 146.093
    
SCFMLR 1.332 1.340 1.545

M1 vs M2 M2 vs M3
    cd 1.316 0.726
    TRd 2.507 18.071
    pvalue  0.285 0.000
SPECTRAL CODING
Parameters 6.000 4.000 3.000
RMSEA 0.040 0.054 0.061
CFI 0.970 0.941 0.922
TLI 0.979 0.962 0.953
--2LL -1286.537 -1290.387 -1292.667
    H0 -1286.508 -1290.124 -1292.666
    
SCFMLR 1.071 1.250 1.232

M1 vs M2 M2 vs M3
    cd 0.715 1.301
    TRd 10.112 3.907
    pvalue  0.006 0.048
RESPONSE STABILITY
Parameters 6.000 4.000 3.000
RMSEA 0.000 0.000 0.000
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CFI 1.000 1.000 1.000
TLI 1.079 1.055 1.020
--2LL 26.454 24.537 22.170
    H0 26.218 24.705 22.213
    
SCFMLR 1.049 1.135 1.154

M1 vs M2 M2 vs M3
    cd 0.878 1.079
    TRd 3.446 4.619
    pvalue  0.178 0.032
NONSTIMULUS ACTIVITY
Parameters 6.000 4.000 3.000
RMSEA 0.066 0.067 0.067
CFI 0.576 0.520 0.506
TLI 0.703 0.694 0.699
--2LL -2021.322 -2023.341 -2024.091
    H0 -2021.440 -2023.332 -2024.093
    
SCFMLR 0.690 0.950 0.936

M1 vs M2 M2 vs M3
    cd 0.171 0.993
    TRd 22.194 1.533
    pvalue  0.000 0.216
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Table 3. Parameter estimates of the best fitting growth model for each neurophysiological measure 
include mean estimate values (Est.), standard errors of the mean (SE), and p-values. Intercepts reflect 
estimates at age 3. For example, at age 3, the average latency value was 90.744 ms (+/- 0.3 ms) and 
decreased by -0.018 (+/- 0.005) per year of age. Please note, for both spectral coding and nonstimulus 
activity, results were analyzed in nanovolts instead of microvolts due to small variance estimates. 
Structural equation models, like all methods derived from Generalized Linear Model (GLM), are 
invariant to linear transformations; results are the same if analyzed in nanovolts, microvolts, etc. To 
convert the estimate values from nanovolts to microvolts, means are divided by 1x103 and variance terms 
are divided by 1x106.

NEURAL 
TIMING

SPECTRAL 
CODING

RESPONSE 
STABILITY

NONSTIMULUS 
ACTIVITY

Model with 
best fit

M2 M1 M2 ---

Sample size 175 175 173 175

Slope with 
Intercept

---
Est. = - 4.167 
SE = 1.796 
p-value = 0.02

---
Est. = - 36.932 
SE = 12.058 
p-value = 0.002

Intercept 
Mean

Est. = 90.744 
SE = 0.03 
p-value < 0.001

Est. = 17.463
SE = 0.848 
p-value < 0.001

Est. = 0.597 
SE = 0.045 
p-value < 0.001

Est. = 100.942 
SE = 3.803 
p-value < 0.001

Slope Mean

Est. = - 0.018 
SE = 0.005 
p-value < 0.001

Est. = 0.318 
SE = 0.151 
p-value = 0.035

Est. = 0.016 
SE = 0.008 
p-value = 0.043

Est. = - 0.765 
SE = 0.648 
p-value = 0.238

Intercept 
Variance

Est. = 0.037 
SE = 0.005 
p-value < 0.001

Est. = 44.414 
SE = 11.633 
p-value < 0.001

Est. = 0.025 
SE = 0.004 
p-value < 0.001

Est. = 441.382 
SE = 118.489 
p-value < 0.001

Slope 
Variance

---
Est. = 0.691 
SE = 0.308 
p-value = 0.025

---
Est. = 3.351 
SE = 1.229 
p-value = 0.006

Residual 
Variance

Est. = 0.014 
SE = 0.002 
p-value < 0.001

Est. = 8.392 
SE = 1.026 
p-value < 0.001

Est. = 0.035 
SE = 0.004 
p-value < 0.001

Est. = 328.371 
SE = 25.262 
p-value < 0.001
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Table 4. Pearson’s correlations between neural measures, controlling for age. Provided are the Pearson 
correlation coefficients (r) and p-values (p) for each correlation. 

Neural timing Spectral coding Response 
stability

Nonstimulus 
activity

Neural timing --- --- --- ---

Spectral coding r = - 0.400
p < 0.001

--- --- ---

Response 
stability

r = - 0.217
p < 0.001

r = 0.656
p < 0.001

--- ---

Nonstimulus 
activity

r = - 0.086
p = 0.75

r = 0.158
p = 0.001

r = - 0.446
p = 0.001

---
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Figure 1. The speech syllable [da] (A), a 170 milisecond (ms) consonant-vowel stimulus, was presented 
to the right ear. The frequency following response (FFR) to the [da] (B) reflects various aspects of sound 
processing, including neural timing (C), spectral coding (D), response stability (E), and nonstimulus 
activity (F).

Figure 2. Path diagram reflecting the structure of the growth curve model used to estimate auditory 
neurophysiological development over time. Four series of growth curve models were run; each 
corresponded to one neural measure of sound processing: neural timing, spectral coding, response 
stability, and nonstimulus activity. Included in the models were estimates of intercept (I) and slope (S) 
means and variances. Constraining intercept values to 1 allowed us to determine the neural measure’s 
initial status (i.e. at age 3). Constraining slope values to age of test (Age 3, Age 4, etc.) allowed us to 
determine linear changes in growth over time.

Figure 3. Neural timing becomes faster over time within childhood. Plotted are the frequency following 
responses (FFRs) to speech in the time domain for all children at age 3 (darkest blue, top left) through age 
8 (lightest grey, bottom left). Waveforms for the six age points are overlaid on the right.

Figure 4. Spectral coding becomes stronger over time in childhood. Top panel: frequency following 
responses (FFRs) to speech are plotted in the frequency domain for all children at age 3 (darkest blue) 
through age 8 (lightest grey). Bottom panel: spectral amplitudes at each frequency. Please note, the 
bottom panel’s x-axes are scaled with 40 hertz (Hz) bins centered around each frequency/harmonic of 
interest [e.g., fundamental frequency (F0) x-axis: 80 Hz to 120 Hz]. Y-axis values are scaled to best 
illustrate effects of age.

Figure 5. Response stability improves over time in childhood. Plotted are two sub-averages (rep 1 and rep 
2; 2000 sweeps each) of frequency following responses (FFRs) to speech. Response stability is calculated 
by taking the Pearson product-moment correlation coefficient (r) of these two sub-averages.



27



28



29



30



31



32

Appendix

Table A.1. Parameter estimates for all growth curve models at each neurophysiological measure. 
In the main text (Table 3), only the best fitting growth curve model is reported for each neurophysiological 
measure. Here, we provide all growth curve model parameter estimates including mean estimate values 
(Est.), standard errors of the mean (SE), and p-values. Unshaded cells reflect estimates not reported in main 
text, while shaded cells are included in the main text. M1, M2, M3 refer to model 1, 2, and 3, respectively.

M1 M2 M3 M1 M2 M3
NEURAL TIMING SPECTRAL CODING

Sample 
size

175 175 175 175 175 175

Slope 
with 
Intercept

Est. = -0.002 
SE = 0.004 
p-value = 0.61

--- --- Est. = -4.167
SE = 1.796 
p-value = 0.02

--- ---

Intercept 
Mean

Est. = 90.748 
SE = 0.033 
p-value < 0.001

Est. = 90.744 
SE = 0.03 
p-value < 0.001

Est. = 90.656 
SE = 0.016 
p-value < 0.001

Est. = 17.463 
SE = 0.848 
p-value < 0.001

Est. = 17.55 
SE = 0.87 
p-value < 0.001

Est. = 19.006 
SE = 0.38 
p-value < 0.001

Slope 
Mean

Est. = -0.019 
SE = 0.005 
p-value < 0.001

Est. = -0.018 
SE = 0.005 
p-value < 0.001

--- Est. = 0.318 
SE = 0.151 
p-value = 0.035

Est. = 0.293 
SE = 0.156 
p-value = 0.06

---

Intercept 
Variance

Est. = 0.056 
SE = 0.029 
p-value < 0.001

Est. = 0.037 
SE = 0.005 
p-value < 0.001

Est. = 0.038 
SE = 0.006 
p-value < 0.001

Est. = 44.414 
SE = 11.633 
p-value < 0.001

Est. = 19.777 
SE = 2.647 
p-value < 0.001

Est. = 20.119 
SE = 2.624 
p-value < 0.001

Slope 
Variance

Est. = 0 
SE = 0.001 
p-value = 0.795

--- --- Est. = 0.691 
SE = 0.308 
p-value = 0.025

--- ---

Residual 
Variance

Est. = 0.014 
SE = 0.002 
p-value < 0.001

Est. = 0.014 
SE = 0.002 
p-value < 0.001

Est. = 0.014 
SE = 0.002 
p-value < 0.001

Est. = 8.392 
SE = 1.026 
p-value < 0.001

Est. = 9.793 
SE = 1.11 
p-value < 0.001

Est. = 9.886 
SE = 1.163 
p-value < 0.001

RESPONSE STABILITY NONSTIMULUS ACTIVITY
Sample 
size 

173 173 173 175 175 175

Slope 
with 
Intercept

Est. = -0.009 
SE = 0.006 
p-value = 0.139

--- --- Est. = -36.932 
SE = 12.058 
p-value = 0.002

--- ---

Intercept 
Mean

Est. = 0.591 
SE = 0.045 
p-value < 0.001

Est. = 0.597 
SE = 0.045 
p-value < 0.001

Est. = 0.679 
SE = 0.016 
p-value < 0.001

Est. = 100.942 
SE = 3.803 
p-value < 0.001

Est. = 101.225 
SE = 3.866 
p-value < 0.001

Est. = 96.973 
SE = 1.321 
p-value < 0.001

Slope 
Mean

Est. = 0.018 
SE = 0.008 
p-value = 0.031

Est. = 0.016 
SE = 0.008 
p-value = 0.043

--- Est. = -0.765 
SE = 0.648 
p-value = 0.238

Est. = -0.828 
SE = 0.664 
p-value = 0.212

---

Intercept 
Variance

Est. = 0.078 
SE = 0.034 
p-value = 0.022

Est. = 0.025 
SE = 0.004 
p-value < 0.001

Est. = 0.026 
SE = 0.004 
p-value < 0.001

Est. = 441.382 
SE = 118.489 
p-value < 0.001

Est. = 141.147 
SE = 35.1 
p-value < 0.001

Est. = 142.279 
SE = 35.358 
p-value < 0.001

Slope 
Variance

Est. = 0.002 
SE = 0.001 
p-value = 0.166

Est. = 0.078
SE = 0.034 
p-value = 0.022

--- Est. = 3.351 
SE = 1.229 
p-value = 0.006

--- ---

Residual 
Variance

Est. = 0.032 
SE = 0.004 
p-value < 0.001

Est. = 0.035 
SE = 0.004 
p-value < 0.001

Est. = 0.035 
SE = 0.004 
p-value < 0.001

Est. = 328.371 
SE = 25.262 
p-value < 0.001

Est. = 340.062 
SE = 27.357 
p-value < 0.001

Est. = 340.584 
SE = 27.305 
p-value < 0.001
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Figure A.1. Effects of sex on neurophysiological development
Growth curve analyses were also performed including sex as a time-invariant factor in the models (Figure 
A.1) and are reported here due to the fact that sex was not a significant predictor of growth for the four 
neurophysiological measures. This is evident in Table A.2, where the inclusion of sex as a predictor had 
little to no impact on overall model fit, and in Table A.3, where Sex was not a significant predictor of 
slope (Sex on S, p > 0.05 for M1 and M2). Although we do not see an effect of sex on development, this 
does not necessarily indicate males and females mature at identical rates; rather, we do not have enough 
evidence to support the notion that there are sex differences across development.  

We do see, however, a significant effect of intercept variance for all models, suggesting there are overall 
sex differences in neurophysiological processing of sound in this age range (Table A.3, mean sex p < 0.05 
for all neural measures).  In general, females had frequency following responses (FFRs) that were faster 
(neural timing), more robust spectrally (spectral coding), more consistent (response stability), and less 
noisy (nonstimulus activity) relative to their male peers.

I S
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Figure A.1 Path diagram reflecting the structure of the growth curve model used to estimate auditory 
neurophysiological development over time. In a follow up series of growth curve models, sex was 

included as a time-invariant factor to investigate sex differences in auditory neurophysiological 
development. Four series of growth curve models were run, with each corresponding to one neural 

measure of sound processing: neural timing, spectral coding, response stability, and nonstimulus activity. 
Included in the models were estimates of intercept (I) and slope (S) means and variances. Constraining 

intercept values to 1 allowed us to determine the neural measure’s initial status (i.e. at age 3). 
Constraining slope values to age of test (Age 3, Age 4, etc.) allowed us to determine linear changes in 

growth over time.
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Table A.2. Fit statistics for growth curve models including sex as a time-invariant factor. Measures of 
model fit included Root Mean Square Error of Approximation (RMSEA), Comparative Fit Index (CFI), 
and Tucker-Lewis index (TLI). Unshaded cells represent model comparisons from the multi-level 
structural equation model where the basis coefficients for estimating change over time corresponded to 
age at test (e.g., 3.15 years, 3.87, etc.). The multi-level structural equation model comparisons (M1 vs M2 
and M2 vs M3) were performed using Chi-Square Difference Tests based on log likelihood values (H0) 
and scaling correction factors obtained within the MLR estimator (SCFMLR), and were computed based 
on the difference test scaling correction (cd) and the Chi-Square difference test (TRd) values.

 M1 M2 M3 M1 M2 M3

NEURAL TIMING   SPECTRAL CODING   
Parameters 10 8 7 Parameters 10 8 7
RMSEA 0.1 0.1 0.111 RMSEA 0.037 0.049 0.047
CFI 0.851 0.839 0.793 CFI 0.97 0.943 0.946
TLI 0.876 0.876 0.847 TLI 0.975 0.956 0.96
--2LL 37.469 34.872 27.825 --2LL -1410.965 -1414.621 -1414.783
    H0 37.01 32.885 27.407     H0 -1410.888 -1414.199 -1414.369
    SCFMLR 1.092 1.038 1.07     SCFMLR 0.933 1.045 1.011

 M1 vs M2 M2 vs M3  M1 vs M2 M2 vs M3
    cd 1.309 0.814     cd 0.483 1.284
    TRd 6.304 13.464     TRd 13.719 0.265
    p-value  0.043 0.000     p-value  0.001 0.607

RESPONSE STABILITY NONSTIMULUS ACTIVITY
Parameters 10 8 7 Parameters 10 8 7
RMSEA 0 0 0 RMSEA 0.063 0.064 0.066
CFI 1 1 1 CFI 0.562 0.496 0.444
TLI 1.094 1.071 1.052 TLI 0.635 0.613 0.588
--2LL -98.722 -100.462 -101.746 --2LL -2146.737 -2148.972 -2150.457
    H0 -98.924 -100.278 -101.481     H0 -2147.266 -2149.216 -2150.422
    SCFMLR 0.945 0.963 0.942     SCFMLR 0.689 0.853 0.854

 M1 vs M2 M2 vs M3  M1 vs M2 M2 vs M3
    cd 0.873 1.11     cd 0.032 0.847
    TRd 3.101 2.168     TRd 120.37 2.849
    p-value  0.212 0.141     p-value  0.000 0.091
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Table A.3. Parameter estimates for growth curve models including sex as a time-invariant factor. 
Included are mean estimate values (Est.), standard errors of the mean (SE), and p-values. Included 
in the models were estimates of intercept (I) and slope (S) means and variances.

NEURAL TIMING M1 M2 M3

Sample size 175 175 175

i on sex
Est. = 0.042 
SE = 0.058 
p-value = 0.469

Est. = 0.065 
SE = 0.059 
p-value = 0.276

Est. = 0.18 
SE = 0.052 
p-value < 0.001

s on sex
Est. = 0.016 
SE = 0.009 
p-value = 0.089

Est. = 0.01 
SE = 0.009 
p-value = 0.278

Est. = -0.014 
SE = 0.007 
p-value = 0.032

s with i
Est. = -0.003 
SE = 0.005 
p-value = 0.483

--- ---

mean sex
Est. = 0.537 
SE = 0.038 
p-value < 0.001

Est. = 0.537 
SE = 0.038 
p-value < 0.001

Est. = 0.537 
SE = 0.038 
p-value < 0.001

intercept i
Est. = 90.731 
SE = 0.043 
p-value < 0.001

Est. = 90.712 
SE = 0.038 
p-value < 0.001

Est. = 90.596 
SE = 0.023 
p-value < 0.001

intercept s
Est. = -0.029 
SE = 0.008 
p-value < 0.001

Est. = -0.025 
SE = 0.007 
p-value < 0.001

---

variance s
Est. = 0.249 
SE = 0.003 
p-value < 0.001

Est. = 0.249 
SE = 0.003 
p-value < 0.001

Est. = 0.249 
SE = 0.003 
p-value < 0.001

residual variance 
neural timing

Est. = 0.014 
SE = 0.002 
p-value < 0.001

Est. = 0.014 
SE = 0.002 
p-value < 0.001

Est. = 0.014 
SE = 0.002 
p-value < 0.001

residual variance i
Est. = 0.062 
SE = 0.032 
p-value = 0.052

Est. = 0.033 
SE = 0.005 
p-value < 0.001

Est. = 0.034 
SE = 0.005 
p-value < 0.001

residual variance s
Est. = 0 
SE = 0.001 
p-value = 0.772

--- ---
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SPECTRAL 
CODING M1 M2 M3

Sample size 175 175 175

i on sex
Est. = -2.979 
SE = 1.643 
p-value = 0.07

Est. = -3.012 
SE = 1.702 
p-value = 0.077

Est. = -3.565 
SE = 1.246 
p-value = 0.004

s on sex
Est. = 0.33 
SE = 0.289 
p-value = 0.253

Est. = 0.333 
SE = 0.303 
p-value = 0.271

Est. = 0.448 
SE = 0.206 
p-value = 0.03

s with i
Est. = -3.867 
SE = 1.733 
p-value = 0.026

--- ---

mean sex
Est. = 0.537 
SE = 0.038 
p-value < 0.001

Est. = 0.537 
SE = 0.038 
p-value < 0.001

Est. = 0.537 
SE = 0.038 
p-value < 0.001

intercept i
Est. = 19.044 
SE = 1.264 
p-value < 0.001

Est. = 19.151 
SE = 1.318 
p-value < 0.001

Est. = 19.705 
SE = 0.579 
p-value < 0.001

intercept s
Est. = 0.143 
SE = 0.215 
p-value = 0.508

Est. = 0.115 
SE = 0.228 
p-value = 0.613

---

variance s
Est. = 0.249 
SE = 0.003 
p-value < 0.001

Est. = 0.249 
SE = 0.003 
p-value < 0.001

Est. = 0.249 
SE = 0.003 
p-value < 0.001

residual variance 
spectral coding

Est. = 8.41 
SE = 1.03 
p-value < 0.001

Est. = 9.756 
SE = 1.12 
p-value < 0.001

Est. = 9.757 
SE = 1.129 
p-value < 0.001

residual variance i
Est. = 41.71 
SE = 10.909 
p-value < 0.001

Est. = 19.244 
SE = 2.536 
p-value < 0.001

Est. = 19.287 
SE = 2.513 
p-value < 0.001

residual variance s
Est. = 0.66 
SE = 0.306 
p-value = 0.031

--- ---
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RESPONSE 
STABILITY M1 M2 M3

Sample size 175 175 175

i on sex
Est. = -0.065 
SE = 0.089 
p-value = 0.468

Est. = -0.059 
SE = 0.087 
p-value = 0.499

Est. = -0.141 
SE = 0.065 
p-value = 0.031

s on sex
Est. = 0.002 
SE = 0.016 
p-value = 0.891

Est. = 0.001 
SE = 0.016 
p-value = 0.974

Est. = 0.017 
SE = 0.011 
p-value = 0.113

s with i
Est. = -0.008 
SE = 0.006 
p-value = 0.166

--- ---

mean sex
Est. = 0.537 
SE = 0.038 
p-value < 0.001

Est. = 0.537 
SE = 0.038 
p-value < 0.001

Est. = 0.537 
SE = 0.038 
p-value < 0.001

intercept i
Est. = 0.624 
SE = 0.065 
p-value < 0.001

Est. = 0.626 
SE = 0.064 
p-value < 0.001

Est. = 0.708 
SE = 0.024 
p-value < 0.001

intercept s
Est. = 0.017 
SE = 0.012 
p-value = 0.151

Est. = 0.017 
SE = 0.012 
p-value = 0.152

---

variance s
Est. = 0.249 
SE = 0.003 
p-value < 0.001

Est. = 0.249 
SE = 0.003 
p-value < 0.001

Est. = 0.249 
SE = 0.003 
p-value < 0.001

residual variance 
response stability

Est. = 0.032 
SE = 0.004 
p-value < 0.001

Est. = 0.035 
SE = 0.004 
p-value < 0.001

Est. = 0.035 
SE = 0.004 
p-value < 0.001

residual variance i
Est. = 0.074 
SE = 0.033 
p-value = 0.027

Est. = 0.024 
SE = 0.004 
p-value < 0.001

Est. = 0.024 
SE = 0.004 
p-value < 0.001

residual variance s
Est. = 0.001 
SE = 0.001 
p-value = 0.204

--- ---
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NONSTIMULUS 
ACTIVITY M1 M2 M3

Sample size 175 175 175

i on sex
Est. = -4.523 
SE = 7.513 
p-value = 0.547

Est. = -4.962 
SE = 7.62 
p-value = 0.515

Est. = 2.719 
SE = 5.847 
p-value = 0.642

s on sex
Est. = 1.177 
SE = 1.271 
p-value = 0.354

Est. = 1.284 
SE = 1.298 
p-value = 0.322

Est. = -0.245 
SE = 0.958 
p-value = 0.798

s with i
Est. = -34.254 
SE = 8.207 
p-value < 0.001

--- ---

mean sex
Est. = 0.537 
SE = 0.038 
p-value < 0.001

Est. = 0.537 
SE = 0.038 
p-value < 0.001

Est. = 0.537 
SE = 0.038 
p-value = 0.000

intercept i
Est. = 103.394 
SE = 5.232 
p-value < 0.001

Est. = 103.974 
SE = 5.297 
p-value < 0.001

Est. = 96.167 
SE = 2.012 
p-value < 0.001

intercept s
Est. = -1.412 
SE = 0.867 
p-value = 0.104

Est. = -1.548 
SE = 0.877 
p-value = 0.077

---

variance s
Est. = 0.249 
SE = 0.003 
p-value < 0.001

Est. = 0.249 
SE = 0.003 
p-value < 0.001

Est. = 0.249 
SE = 0.003 
p-value < 0.001

residual variance 
nonstimulus activity

Est. = 327.831 
SE = 25.229 
p-value < 0.001

Est. = 338.553 
SE = 27.633 
p-value < 0.001

Est. = 341.98 
SE = 27.536 
p-value = 0.000

residual variance i
Est. = 428.576 
SE = 101.432 
p-value < 0.001

Est. = 141.683 
SE = 36.609 
p-value < 0.001

Est. = 139.308 
SE = 35.588 
p-value < 0.001

residual variance s
Est. = 2.826 
SE = 0.668 
p-value < 0.001

--- ---


