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� Auditory neurophysiological processing of sound matures from ages 3–8 years.
� The frequency following response, a subcortical index of sound processing, becomes faster, more

robust, and more consistent with age.
� Growth curve modeling reveals individual differences in auditory maturation are evident overall and

over time throughout early childhood.

a b s t r a c t

Objective: During early childhood, the development of communication skills, such as language and
speech perception, relies in part on auditory system maturation. Because auditory behavioral tests
engage cognition, mapping auditory maturation in the absence of cognitive influence remains a chal-
lenge. Furthermore, longitudinal investigations that capture auditory maturation within and between
individuals in this age group are scarce. The goal of this study is to longitudinally measure auditory sys-
tem maturation in early childhood using an objective approach.
Methods: We collected frequency-following responses (FFR) to speech in 175 children, ages 3–8 years,
annually for up to five years. The FFR is an objective measure of sound encoding that predominantly
reflects auditory midbrain activity. Eliciting FFRs to speech provides rich details of various aspects of
sound processing, namely, neural timing, spectral coding, and response stability. We used growth curve
modeling to answer three questions: 1) does sound encoding change across childhood? 2) are there indi-
vidual differences in sound encoding? and 3) are there individual differences in the development of
sound encoding?
Results: Subcortical auditory maturation develops linearly from 3-8 years. With age, FFRs became faster,
more robust, and more consistent. Individual differences were evident in each aspect of sound processing,
while individual differences in rates of change were observed for spectral coding alone.
Conclusions: By using an objective measure and a longitudinal approach, these results suggest subcortical
auditory development continues throughout childhood, and that different facets of auditory processing
follow distinct developmental trajectories.
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Significance: The present findings improve our understanding of auditory system development in
typically-developing children, opening the door for future investigations of disordered sound processing
in clinical populations.

� 2021 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights
reserved.
1. Introduction

During childhood, growth is pervasive, both physically and
physiologically. Communication skills, such as language and
speech perception, expand rapidly. By age 2, most children can
combine words into 2-word phrases and up to age 4, sentence
length grows an average of one word per year. Then, from 3 to
8 years of age, a child’s lexicon grows exponentially, from ~150
words to ~23,000 words (Macias and Twyman, 2011; Templin,
1957). Concurrently, sentences become more complex, with the
addition of prepositions, adjectives, and adverbs by age 5 (Macias
and Twyman, 2011). The development of these skills relies in part
on the development of the auditory system. Anatomically, periph-
eral structures (e.g., cochlea) reach maturity in infancy (Abdala and
Keefe, 2006; Eggermont and Moore, 2012; Lavigne-Rebillard and
Pujol, 1987), while central auditory pathways (e.g., brainstem to
cortex) follow a more protracted trajectory through late childhood
and even adolescence (Moore and Linthicum, 2007). How the audi-
tory system develops functionally, however, is an open question.
Quantifying this maturation is important for understanding differ-
ences in speech and language mastery, and ultimately, for identify-
ing disorders of language development.

One line of research suggests that functional maturation is teth-
ered to structural maturation of the auditory system. That is, mat-
uration of distinct auditory perceptual skills follows trajectories
roughly corresponding to development of the auditory structures
presumed to support these skills (Moore, 2002; Sanes and
Woolley, 2011). For example, frequency resolution becomes
adult-like by the first year of life (Spetner and Olsho, 1990;
Werner, 1996), which is also around the time the cochlea is struc-
turally mature (Eggermont et al., 1996; Ponton et al., 1992). In con-
trast, perception of temporal cues (e.g., temporal integration) does
not reach adult-like levels until ages 6–10 years (Hartley et al.,
2000; Jensen and Neff, 1993; Litovsky, 1997; Wightman et al.,
1989), possibly due to prolonged neuronal development within
the central auditory system (Moore and Linthicum, 2007).

An alternative hypothesis as to why there are multiple trajecto-
ries of functional maturation is that some auditory behavioral tasks
call upon fundamental mechanisms of ‘‘hearing” (i.e., cochlear
function) that reach maturity earlier on, while other tasks recruit
additional cognitive processes that continue to develop through
adolescence. Indeed, auditory perceptual tasks range in their
auditory-system demands and the extent to which cognitive pro-
cesses are recruited. For example, many auditory behavioral tests
require sustained attention (Moore et al., 2010), raising the possi-
bility that the different tests are not indexing differential develop-
ment of auditory processes, but rather the extent to which these
processes engage attention. Further complicating the picture is
the fact that cognitive processes undergo their own development
in early childhood, so it is also possible these behavioral measures
are in fact measuring maturation of cognitive function. To examine
auditory development in childhood without the confound of cogni-
tive factors, an objective approach is needed (Sanes and Woolley,
2011).

The frequency following response (FFR), a neurophysiological
measure of electrical events generated within and throughout
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the auditory pathway (Bidelman, 2015; Chandrasekaran and
Kraus, 2010; White-Schwoch et al., 2017), serves as an objective
index of auditory processing because it does not depend on
attention or volition (Krizman and Kraus, 2019; Skoe and Kraus,
2010). Because it does not actively engage cognition, the FFR can
investigate auditory maturation without the confounds of cogni-
tive processing. Moreover, eliciting the FFR to complex sounds,
such as speech, provides rich insights into distinct aspects of audi-
tory system function, including the fidelity with which acoustic
features are processed and the health of the auditory system irre-
spective of sound engagement (Krizman et al., 2020). These aspects
of auditory function are indexed through measures derived from
the FFR, including neural timing, spectral coding, response stabil-
ity, and nonstimulus activity (Krizman and Kraus, 2019; Skoe and
Kraus, 2010). Examining these aspects simultaneously and objec-
tively would enable a more complete investigation of sound pro-
cessing, as each offers a perspective into the many ways the
nervous system engages with sound.

For example, two aspects of auditory function, neural timing
and spectral coding, reflect the auditory system’s representation
of temporal and frequency information, respectively, both of which
are relevant for communication (Krizman and Kraus, 2019; Skoe
and Kraus, 2010). Fluctuations in the temporal and spectral compo-
nents of speech inform a listener of what was said, where the
sound originated, and who spoke the message (Carré et al.,
2017). The shape and speed of these fluctuations can also signal
emotion—such as a speaker’s tone or intonation—and comprise
the building blocks of speech, like phonemes or syllables (Frick,
1985).

In contrast, response stability reflects the auditory system’s
ability to reliably encode a message. During a recording session,
thousands of stimulus trials are presented to a participant to gen-
erate an averaged response waveform. By correlating subsets of
these trials, response stability captures how much the response
does or does not change across trials, and is therefore thought to
reflect the reliability of the auditory system in encoding stimulus
features (Hornickel and Kraus, 2013; Krizman and Kraus, 2019).
Stable auditory processing is believed to facilitate the sound-to-
meaning connections associated with language learning and learn-
ing to read; unstable auditory processing is a hallmark of children
with language disorders (Hornickel and Kraus, 2013; Otto-Meyer
et al., 2018).

Finally, nonstimulus activity, captured during the period of
silence between stimulus presentations, provides an index of base-
line neural activity when not evoked (Krizman and Kraus, 2019);
that is, it measures nonstimulus activity thought to reflect back-
ground neural and non-neural noise. Background activity levels
are influenced by experience: they are higher in children from
socioeconomically impoverished backgrounds (Skoe et al., 2013)
and they are lower in expert athletes, even when controlling for
myogenic artifact (Krizman et al., 2020). Higher levels of nonstim-
ulus activity may hinder communication skills, such as the ability
to perceive speech in noisy environments (Anderson et al., 2012).

It is currently unknown how these properties of sound encoding
develop in childhood. Mapping the maturational course of these
various neurophysiological measures would provide insight into
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the multifaceted development of auditory function, and therefore
could inform clinical diagnostics and interventions, and ultimately
guide clinical decision-making.

Moreover, most of what is known about auditory system develop-
ment has been identified using a cross-sectional approach. Age-
related differences in characteristic response components (N1 and
P1) of cortical auditory evoked potentials are evident in childhood
(Wunderlich and Cone-Wesson, 2006) and adolescence (Ponton
et al., 2000; Sharma et al., 1997). Subcortical responses, measured
using the FFR to speech, also differ between age groups and have
been observed in comparisons of infants (Anderson et al., 2015;
Jeng et al., 2010), young (3–5 yo) and school-age children (8–12
yo) (Johnson et al., 2008), and across the lifespan (Skoe et al.,
2015). However, one assumption of cross-sectional research is that
between-individual differences also reflect within-individual changes
over time. Tracking within-individual changes requires a longitudinal
design, yet few have employed this approach to examine auditory
neurophysiological development, especially in childhood.

Here, we map auditory neurophysiological maturation during
childhood using an objective index of auditory processing and a lon-
gitudinal approach. The following research questions were asked:

(1) Does auditory encoding of speech change across childhood
development?

(2) Are there individual differences in speech-sound encoding?
(3) Are there individual differences in the development of

speech-sound encoding over time?

To answer these questions, we measured FFRs to speech in a
cohort of children (n = 175) beginning at age 3 or 4 years and contin-
uing each year for up to five years until they were 7 or 8 years old, cul-
minating in 463 test points. Analysis of the longitudinal data was
performed using growth curve modeling, which allowed us to deter-
mine general developmental changes, individual differences, and indi-
vidual differences in rates of change. We hypothesized that distinct
aspects of auditory processing continue to develop between 3 and
8 years of age and that the different aspects themselves, as well as
their development, vary across individuals. Specifically, we predicted
that that as children develop, neurophysiological responses to speech
become faster, more robust, more consistent, and less noisy, with vari-
ation on these measures seen across individuals and across age.
2. Methods

2.1. Participants

One hundred and seventy-five (n = 175) children, recruited
from the Chicago area, were included in the study. Participants
were monolingual English speakers with no history of a neurolog-
ical disorder. All passed a screening of peripheral auditory health
(normal otoscopy, Type A tympanograms, and distortion product
otoacoustic emissions �6 dB sound pressure level (SPL) above
noise floor from 0.5 to 4 kHz) and demonstrated normal click-
evoked auditory brainstem responses (wave V latency <6.00 ms
in response to a click presented at 80 dB SPL at 31 Hz). Children
provided verbal assent and parents and/or legal guardians pro-
vided written consent. All experimental procedures were approved
by and carried out in accordance to recognized standards set by the
Northwestern University Institutional Review Board. Participants
were monetarily compensated for their time.
2.2. Testing

Two age cohorts were tested at an initial visit: 3-year-olds
(n = 82) and 4-year-olds (n = 93); following this initial test visit,
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children returned to the lab every 12 months for up to 5 years
(Table 1). To achieve greater specificity in the growth curve model,
data were analyzed longitudinally with respect to age at test rather
than year of study. Thus, although all analyses considered age as a
continuous variable, for illustrative purposes, FFR data have been
split into age groups in the figures.

2.3. Electrophysiology

FFRs evoked by the speech syllable [da], (Skoe and Kraus, 2010),
were collected using a BioSEMI Active2 recording system and audi-
tory brainstem response module. Recordings were performed in an
electrically-shielded and sound-attenuated booth (IAC Acoustics,
Bronx, NY, USA), and lasted ~30 min. The [da], presented in isola-
tion, was played in alternating polarities to the right ear at 80 dB
SPL through electromagnetically-shielded insert earphones (ER-
3A, Etymotic Research, Elk Grove Village, IL, USA).

The speech syllable [da] is a 170 ms voiced, six-formant stop
consonant with a fundamental frequency (F0) of 100 Hz that was
constructed using a Klatt-based synthesizer at 20 kHz (Fig. 1A).
During the consonant-vowel transition (i.e., the/d/to/a/), the lower
three formants linearly change (F1: 400–720 Hz, F2: 1700–
1240 Hz, F3: 2580–2500 Hz), while the F0 and upper three for-
mants remain steady (F0: 100 Hz, F4: 3300 Hz, F5: 3750 Hz, F6:
4900 Hz). During the vowel portion of the stimulus (i.e., the/a/),
the F0 and six formants remain steady.

During the recording session, children sat in a recliner chair and
watched a movie of their choice. To encourage compliance, the left
ear was unoccluded so the child could hear the soundtrack of the
movie (<40 dB SPL in sound field). At least 4200 stimulus trials
were presented to obtain 4000 artifact-free trials. Electrodes were
placed at Cz for active (non-inverting), right and left earlobes for
unlinked references (inverting), and ±1 cm on either side of Fpz
for ground (CMS/DRL). All offsets were kept below 50 mV.

Within the BioSEMI ActiABR module for LabView 2.0 (National
Instruments, Austin, TX, USA), and per the hardware’s limitation,
responses were online filtered from 100-3000 Hz (6 dB/octave
roll-off) and digitized at 16.384 kHz. To open the high pass to
0.1 Hz, offline amplification of 6 dB/octave was performed in the
frequency domain in MATLAB (The Mathworks, Inc., Natick, MA,
USA) using custom programs. Responses were then bandpass fil-
tered to the frequency region of interest (70–2000 Hz, Butterworth
filter, 12 dB/octave roll off, zero phase shift), epoched from �40 to
210 ms (stimulus onset at 0 ms), baseline-corrected relative to the
prestimulus period, and artifact rejected at ±35 lV. To emphasize
the stimulus envelope, responses to the alternating polarities were
added (Aiken and Picton, 2008).

2.4. Frequency following response parameters

The FFR is an auditory evoked potential that offers insights into
various aspects of neural sound processing (Krizman and Kraus,
2019; Skoe and Kraus, 2010). Four neural parameters of interest,
neural timing, spectral coding, response stability, and nonstimulus
activity were included in this investigation (Fig. 1).

2.4.1. Neural timing
Neural timing was examined by measuring peak latencies of the

FFR, which occur at periodic intervals that roughly correspond to
the periodicity of the fundamental frequency (F0) and are thought
to reflect phase locking to the stimulus (Krizman and Kraus, 2019;
Skoe and Kraus, 2010). Latencies were identified in Neuroscan
(Neuroscan Edit 4.5, Compumedics, Charlotte, NC) using a local
maximum and minimum detection algorithm followed by manual
verification using a blind procedure outlined in (Anderson et al.,
2010a). Thirty eight peaks and troughs were chosen, and for statis-



Table 1
A) Participant descriptive statistics broken down by age at test and year of test of the longitudinal study. B) Descriptive statistics for test-retest duration for each year of
longitudinal study. C) Number of outliers for each neurophysiological measure that were excluded from growth curve analyses. Please see Methods for more information.

A) Participant descriptive statistics
Age at test 3yo 4yo 5yo 6yo 7yo 8+

Count (n) 82 141 95 70 48 27
Average age (years) 3.47 4.49 5.51 6.52 7.49 8.54
SD (years) 0.27 0.29 0.29 0.30 0.29 0.40
Min age (years) 3.01 4.01 5.02 6.01 7.01 8.01
Max age (years) 3.94 4.97 6.00 6.96 7.95 9.29
Females (n) 42 63 40 30 22 11
Males (n) 40 78 55 40 26 16

Year of test Year 1 Year 2 Year 3 Year 4 Year 5
Count 175 115 85 62 26
Females 81 51 36 28 12
Males 94 64 49 34 14
Average age (years) 4.02 5.12 6.21 7.32 8.36
SD 0.62 0.63 0.65 0.65 0.54

B) Test-retest duration (months) Year 1–2 Year 2–3 Year 3–4 Year 4–5
Average 12.90 12.77 12.45 11.39
SD 2.00 1.78 1.24 1.66
Min 7.79 10.64 11.04 6.67
Max 20.99 22.14 18.33 13.50
Median 12.25 12.29 12.12 11.86

C) Outlier count (n) Year 1 Year 2 Year 3 Year 4 Year 5 All years % of total sample
Neural timing 2 2 3 3 0 10 2.16
Spectral coding 4 1 4 3 4 16 3.46
Response stability 7 0 1 2 0 10 2.16
Nonstimulus activity 8 4 3 2 2 19 4.10

Fig. 1. The speech syllable [da] (A), a 170 milisecond (ms) consonant-vowel stimulus, was presented to the right ear. The frequency following response (FFR) to the [da] (B)
reflects various aspects of sound processing, including neural timing (C), spectral coding (D), response stability (E), and nonstimulus activity (F).

E.C. Thompson, R. Estabrook, J. Krizman et al. Clinical Neurophysiology 132 (2021) 2110–2122
tical analyses, a composite timing measure was calculated by aver-
aging the peak and trough latencies within the 20–160 ms
response region.

2.4.2. Spectral coding
The scalp-recorded FFR robustly represents the fundamental

frequency (F0) and harmonics of speech (Greenberg et al.,
1987; Krishnan et al., 2004, 2005; Russo et al., 2004; Xu
2113
et al., 2006). To determine the frequency representation within
the FFR, a fast Fourier transform (FFT) was applied to extract
the spectral amplitudes of the fundamental frequency (F0) and
its integer harmonics up to 1000 Hz within the 5–170 ms por-
tion of the response. A 16,384 point FFT was computed with an
82.5 ms ramp, and amplitudes were calculated over 40 Hz bins
centered at the F0 and integer harmonics. For statistical pur-
poses, a composite measure was created by averaging all spec-
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tral amplitudes from the fundamental frequency (F0) through
the tenth harmonic (H10).

2.4.3. Response stability
To measure response stability over the course of the recording

session, first, two sub-averages of the FFR response were calcu-
lated. Each sub-average comprised 2000 sweeps, 1000 of each
stimulus polarity, so that the odd epochs of each polarity were
used to create one sub-average and the even epochs of each polar-
ity were used to create the other sub-average (Hornickel and
Kraus, 2013). The sub-averages were then correlated to compute
a Pearson product-moment correlation coefficient (r). For statisti-
cal purposes, data were Fisher (z) transformed.

2.4.4. Nonstimulus activity
To quantify the non-evoked neural activity of the FFR, the root-

mean-square (RMS) amplitude of the 40-ms interval preceding the
stimulus-evoked response was calculated.

2.5. Data monitoring and outlier checking

Prior to statistical analyses, data were examined for outliers.
Particular care was taken to remove as few outliers as possible.
Data points were only excluded if 1) there was a technical error
in collection, or 2) if >3 standard deviations (SD) above/below
mean. Because these neurophysiological measures are distinct, an
outlier for one neurophysiological measure was not necessarily
an outlier for the other neurophysiological measures within that
year. In addition, if a participant’s data was excluded at one time
point (e.g., at age 3), but had data from other time points within
3 SD (e.g., at ages 4 and 5), these values were included. In all, 10
out of 463 (2.16%) data points were removed for neural timing
analyses, 16 out of 463 (3.46%) for spectral coding, 10 out of 463
(2.16%) for response stability, and 19 out of 463 (4.10%) for non-
stimulus activity. Across all measures and all years (n = 463 test
points), 26 subjects had one outlier datapoint, 4 subjects had two
outlier datapoints, 2 subjects had three outlier datapoints, and 4
subjects had four outlier datapoints. 139 subjects had zero outlier
datapoints. Please see Table 1C for more information regarding
outlier exclusion by year of study.

For both spectral coding and nonstimulus activity, values were
converted to nanovolts instead of microvolts due to small variance
estimates. Structural equation models, like all methods derived
from Generalized Linear Model (GLM), are invariant to linear trans-
formations; results are the same regardless of metric unit (i.e., if
analyzed in nanovolts, microvolts, etc.). Thus, results for these
measures are reported in nanovolts instead of microvolts; to con-
vert the growth curve model estimate values from nanovolts to
microvolts, means can be divided by 1 � 103 and variance terms
by 1 � 106.

2.6. Statistical analyses – growth curve modeling

For each neurophysiological measure (i.e., neural timing, spec-
tral coding, response stability, and nonstimulus activity), a series
of growth curve models were run to identify the functional form
that best represented within- and between-individual changes
(Please see Fig. 2 for path diagram reflecting the structure of
growth curve modeling). The series of growth curve models were
run through a multi-level structural equation model where each
individual’s age at test (e.g., Age3 = 3.57 years) was used as the
basis coefficient for estimating change over time. In other words,
each participant’s precise age at test (e.g., 3.47) is loaded into the
model as their ‘‘age” for the year they visited the lab, and predic-
tions in the neural measure are made for that exact age. In addition
to accounting for this variance in age, the growth curve models
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also account for variance in time between an individual’s test
points (e.g., 12 months to 20 months, etc). Included in the models
were estimates of intercept (I) and slope (S) means and variances.
Constraining intercept values to 1 allowed us to determine the
neural measure’s initial status (i.e. at age 3), while constraining
slope values to age of test allowed us to determine linear changes
in growth over time. Model comparisons were performed using
Chi-Square Difference Tests based on log likelihood values and
scaling correction factors obtained within the MLR estimator
(Satorra and Bentler, 2010). All analyses were run in Mplus
(Muthén and Muthén, 2017). P values less than 0.05 were consid-
ered significant.

The series of growth curve models were implemented as fol-
lows. First, we ran a full growth curve model to examine individual
differences within our dataset, as well as individual differences
with respect to development (i.e., rates of change). In this model
(Model 1), all parameters were freely estimated: intercept mean,
slope mean, intercept variance, intercept slope, intercept and slope
mean covariance, and residual variances. Next, we ran a simplifica-
tion of Model 1 to estimate the overall change in the respective
neurophysiological measure over time. In this model (i.e., Model
2), fixing slope variance to zero allowed us to test the null hypoth-
esis that all individuals develop at the same rate. Finally, we ran an
even simpler model, Model 3, by fixing slope mean and slope vari-
ance to zero to test the null hypothesis that there are no changes in
neurophysiological development over time.

To answer our research questions we systematically excluded
growth curve parameters in the series of models (M1, M2, M3)
and then performed model comparisons (M1 vs M2, M2 vs. M3).
Comparing models M2 vs M3 allowed us to determine whether
or not improvement in fit was attributable to overall change over
time (i.e., growth curve parameter: slope mean), while comparing
M2 vs M1 allowed us to determine whether the improvement in fit
is attributable to individual differences in rates of change (i.e.,
growth curve parameter: slope variance).

2.7. Measures of model fit

To determine standardized measures of model fit, the series of
growth models were run a second time through a traditional struc-
tural equation model where fixed ages were used (e.g., Age3 = 3.0,
for all individuals) as the basis coefficients for estimating change
over time. These indices included the Root Mean Square Error of
Approximation (RMSEA), the Comparative Fit Index (CFI), and the
Tucker-Lewis index (TLI). For a description of these indices please
see (Hooper et al., 2008). For RMSEA, values less than 0.04 are con-
sidered to be an ‘‘excellent” fit, less than 0.07 a ‘‘good” fit, and less
than 0.1 a ‘‘fair” fit (Steiger, 2007); for CFI and TLI, models with an
‘‘excellent” fit are greater than 0.95 (Hu and Bentler, 1999).

By running the growth curves through the multi-level struc-
tural equation model (with age at test as the basis coefficient)
and traditional structural equation model (with fixed age as the
basis coefficient) we can 1) determine the fit of the models with
greater age specificity to determine precise estimates, and 2) com-
pare the models using standardized and widely-used ‘‘goodness of
fit” indices.

2.8. Statistical analyses – other

For each neurophysiological measure, we examined the Intra-
class Correlation Coefficient (ICC), q, which reflects the proportion
of variance in the outcome variable explained by each model’s total
variance. In other words, the ICC allows us to calculate the amount
of variation unexplained by model predictors and how that relates
to overall unexplained variance. In addition, to evaluate the
collinearity of the neurophysiological measures, we performed a



Fig. 2. Path diagram reflecting the structure of the growth curve model used to estimate auditory neurophysiological development over time. Four series of growth curve
models were run; each corresponded to one neural measure of sound processing: neural timing, spectral coding, response stability, and nonstimulus activity. Included in the
models were estimates of intercept (I) and slope (S) means and variances. Constraining intercept values to 1 allowed us to determine the neural measure’s initial status (i.e. at
age 3). Constraining slope values to age of test (Age 3, Age 4, etc.) allowed us to determine linear changes in growth over time.
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series of Pearson Correlations controlling for age. Finally, to inves-
tigate the influence of sex on auditory neurophysiological develop-
ment, growth curve analyses were run including sex as a time-
invariant factor. Because sex was not a significant predictor of
growth for the four neurophysiological measures, these results
are excluded from the main text and reported in the Supplemen-
tary Appendix. Of note, including sex as a factor revealed overall
sex differences in each of the four neurophysiological measures,
in that females had FFRs that were faster, more robust in repre-
senting spectral information, more consistent, and less noisy com-
pared to their male peers. As sex differences are not the main focus
of this paper, results are provided in the Supplementary Appendix
as well. For a recent report of developmental sex differences in
subcortical auditory processing, please see (Krizman et al., 2019).
3. Results

3.1. Summary

Fit statistics and parameter estimates for the series of growth
curve models are provided in Table 2 and Table 3, respectively.
Estimates for the best fitting growth curve model are reported;
for all growth curve parameter estimates, please see Supplemen-
tary Appendix Table A.1. Fit statistics for neural timing, spectral
coding, and response stability growth curve models reflected
appropriately fitting models. For neural timing and response stabil-
ity, the second model (M2) fit best, suggesting these neurophysio-
logical measures improved over time: as children aged, neural
responses became earlier and more consistent. For spectral coding,
the first model (M1) fit best, suggesting frequency representation
also improves over time (spectral coding became stronger with
age), and that there were individual differences in rates of change.
We observed relatively high Intraclass Correlation Coefficient (ICC)
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values, q, for neural timing (q = 0.731) and spectral coding
(q = 0.670), a moderately-sized ICC value for response stability
(q = 0.426), and a relatively low ICC value for nonstimulus activity
(q = 0.294). Given high ICC values indicate high similarity between
values from the same measure, and low ICC values reflect little to
no similarity between values from the same measure, these results
suggest that neural timing, spectral coding, and response stability
are reliable indices of their respective facet of sound processing,
and therefore, how sound processing changes over time.

3.2. Neural timing development

Model comparisons of the latency growth curves show M2 had
the best fit (Table 2). By testing whether or not the addition of the
mean slope parameter significantly improved the growth curve
(M2 vs M3), we found the overall model fit improved (Chi square
difference test: M2 vs M3, p < 0.01) and had an overall ‘‘fair” fit
based on traditional ‘‘goodness of fit” indices (M2: RMSEA = 0.103,
CFI = 0.847, TLI = 0.903). In contrast, the addition of the slope vari-
ance parameter (M1) did not significantly improve the model (Chi
square difference test: M1 vs M2, p = 0.285).

The model comparisons for Model 2 affirms two of our three
hypotheses with respect to neural timing: 1) auditory encoding
of neural timing changes across childhood (Mean slope:
Estimate = -0.018, SE = 0.005, p < 0.001) and 2) individual differ-
ences exist in neural timing (Intercept variance: Estimate = 0.037,
SE = 0.005, p < 0.001). Because freely estimating slope variance did
not improve the model (M1 vs M2), our dataset does not support
the notion that there are individual differences in rates of change
in neural timing.

Model 20s parameter estimates (Table 3) indicate the average
latency value of the neural response was 90.744 milliseconds at
age 3 (Mean intercept: Estimate = 90.744, SE = 0.030, p < 0.001)
and became significantly earlier each year by 0.018 milliseconds.



Table 2
Fit statistics for the series of growth models for each neurophysiological measure.
Shaded cells reflect fit statistics from the traditional structural equation model where
the basis coefficients for estimating change over time were fixed (e.g., 3.0 for all 3-
year-olds). Measures of model fit included Root Mean Square Error of Approximation
(RMSEA), Comparative Fit Index (CFI), and Tucker-Lewis index (TLI). Unshaded cells
represent model comparisons from the multi-level structural equation model where
the basis coefficients for estimating change over time corresponded to age at test (e.g.,
3.15 years, 3.87, etc.). The multi-level structural equation model comparisons (M1 vs
M2 and M2 vs M3) were performed using Chi-Square Difference Tests based on log
likelihood values (H0) and scaling correction factors obtained within the MLR
estimator (SCFMLR), and were computed based on the difference test scaling
correction (cd) and the Chi-Square difference test (TRd) values. Please see Methods
for more information.

M1 M2 M3

NEURAL TIMING
Parameters 6 4 3
RMSEA 0.109 0.103 0.116
CFI 0.844 0.847 0.796
TLI 0.891 0.903 0.876
–2LL 154.367 153.759 146.458
H0 154.298 152.649 146.093
SCFMLR 1.332 1.340 1.545

M1 vs M2 M2 vs M3
cd 1.316 0.726
TRd 2.507 18.071
pvalue 0.285 0.000

SPECTRAL CODING
Parameters 6.000 4.000 3.000
RMSEA 0.040 0.054 0.061
CFI 0.970 0.941 0.922
TLI 0.979 0.962 0.953
–2LL �1286.537 �1290.387 �1292.667
H0 �1286.508 �1290.124 �1292.666
SCFMLR 1.071 1.250 1.232

M1 vs M2 M2 vs M3
cd 0.715 1.301
TRd 10.112 3.907
pvalue 0.006 0.048

RESPONSE STABILITY
Parameters 6.000 4.000 3.000
RMSEA 0.000 0.000 0.000
CFI 1.000 1.000 1.000
TLI 1.079 1.055 1.020
–2LL 26.454 24.537 22.170
H0 26.218 24.705 22.213
SCFMLR 1.049 1.135 1.154

M1 vs M2 M2 vs M3
Cd 0.878 1.079
TRd 3.446 4.619
Pvalue 0.178 0.032

NONSTIMULUS ACTIVITY
Parameters 6.000 4.000 3.000
RMSEA 0.066 0.067 0.067
CFI 0.576 0.520 0.506
TLI 0.703 0.694 0.699
–2LL �2021.322 �2023.341 �2024.091
H0 �2021.440 �2023.332 �2024.093
SCFMLR 0.690 0.950 0.936

M1 vs M2 M2 vs M3
Cd 0.171 0.993
TRd 22.194 1.533
Pvalue 0.000 0.216
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Please see Fig. 3 for graphical representation of neural timing
development.
3.3. Spectral coding development

Model comparisons of the spectral coding growth curves show
M1 had the best fit. The addition of the mean slope parameter sig-
nificantly improved the growth curve (Chi square difference test:
M2 vs M3, p < 0.04), as did the addition of the slope variance
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parameter (Chi square difference test: M1 vs M2, p = 0.006). Model
1 had an ‘‘excellent” fit based on traditional ‘‘goodness of fit”
indices (M1: RMSEA = 0.04, CFI = 0.970, TLI = 0.979).

The model comparisons affirms our three hypotheses with
respect to spectral coding: 1) auditory spectral coding changes
across childhood (Mean slope: Estimate = 0.318, SE = 0.151,
p = 0.035), 2) individual differences in spectral coding exist (Inter-
cept variance: Estimate = 44.414, SE = 11.633, p < 0.001), and 3)
individual differences in the development of spectral coding exist
(Slope variance: Estimate = 0.691, SE = 11.633, p < 0.001). Each
individual’s spectral coding starting level is related to developmen-
tal changes over time (latent variable covariances of intercept &
slope: Estimate = -4.167, SE = 1.796, p = 0.020), such that lower
spectral coding values at age 3 are associated with greater change
in spectral coding over time each year.

Model 10s parameter estimates indicate the average level of
spectral coding was 0.017 microvolts at age 3 (Mean intercept:
Estimate = 17.463, SE = 0.848, p < 0.001) and became significantly
larger each year by 0.003 microvolts. Please see Fig. 4 for graphical
representation of spectral coding development.

3.4. Response stability development

Model comparisons of the response stability growth curves
show M2 had the best fit. By testing whether or not the addition
of the mean slope parameter significantly improved the growth
curve (M2 vs M3), we found the overall model fit improved (Chi
square difference test: M2 vs M3, p = 0.03) and was ‘‘excellent”
based on traditional ‘‘goodness of fit” indices (M2: RMSEA = 0.00,
CFI = 1.00, TLI = 1.055). In contrast, the addition of the slope vari-
ance parameter (M1) did not significantly improve the model (Chi
square difference test: M1 vs M2, p = 0.178).

Similar to neural timing, the model comparison affirms two of
our three hypotheses with respect to response stability: 1) audi-
tory response stability changes across childhood development
(Mean slope: Estimate = 0.016, SE = 0.008, p = 0.043) and 2) there
are individual differences in response stability overall (Intercept
variance: Estimate = 0.025, SE = 0.004, p < 0.001). Because freely
estimating slope variance did not improve the model (M1 vs
M2), our dataset does not support the notion that there are individ-
ual differences in response stability rates of change.

Model 20s parameter estimates indicate the average response
stability valuewas 0.597 at age 3 (Mean intercept: Estimate = 0.597,
SE = 0.045, p < 0.001) and became significantly larger each year by
0.016 units. Please see Fig. 5 for graphical representation of
response stability development.

3.5. Nonstimulus activity

Model comparisons of the nonstimulus activity growth curves
showM1 had the best fit, despite being a poorly fitting model over-
all (M1: RMSEA = 0.066, CFI = 0.576, TLI = 0.703).

3.6. Relationships between neural measures

To determine collinearity between neural measures, we ran a
series of Pearson’s correlations (Table 4). Controlling for age, weak
relationships were found between nonstimulus activity and neural
timing (r = -0.086), neural timing and response stability (r = -
0.217), and nonstimulus activity and spectral coding (r = 0.158).
Moderate relationships were observed between neural timing
and spectral coding (r = -0.400), spectral coding and response sta-
bility (r = 0.656), and nonstimulus activity and response stability
(r = -0.446). No strong correlations (r > 0.7) were evident among
the neural measures.



Table 3
Parameter estimates of the best fitting growth model for each neurophysiological measure include mean estimate values (Est.), standard errors of the mean (SE), and p-values.
Intercepts reflect estimates at age 3. For example, at age 3, the average latency value was 90.744 ms (±0.3 ms) and decreased by �0.018 (±0.005) per year of age. Please note, for
both spectral coding and nonstimulus activity, results were analyzed in nanovolts instead of microvolts due to small variance estimates. Structural equation models, like all
methods derived from Generalized Linear Model (GLM), are invariant to linear transformations; results are the same if analyzed in nanovolts, microvolts, etc. To convert the
estimate values from nanovolts to microvolts, means are divided by 1 � 103 and variance terms are divided by 1 � 106.

NEURAL TIMING SPECTRAL CODING RESPONSE STABILITY NONSTIMULUS ACTIVITY

Model with best fit M2 M1 M2 –
Sample size 175 175 173 175
Slope with Intercept – Est. = �4.167

SE = 1.796
p-value = 0.02

– Est. = �36.932
SE = 12.058
p-value = 0.002

Intercept Mean Est. = 90.744
SE = 0.03
p-value < 0.001

Est. = 17.463
SE = 0.848
p-value < 0.001

Est. = 0.597
SE = 0.045
p-value < 0.001

Est. = 100.942
SE = 3.803
p-value < 0.001

Slope Mean Est. = �0.018
SE = 0.005
p-value < 0.001

Est. = 0.318
SE = 0.151
p-value = 0.035

Est. = 0.016
SE = 0.008
p-value = 0.043

Est. = �0.765
SE = 0.648
p-value = 0.238

Intercept Variance Est. = 0.037
SE = 0.005
p-value < 0.001

Est. = 44.414
SE = 11.633
p-value < 0.001

Est. = 0.025
SE = 0.004
p-value < 0.001

Est. = 441.382
SE = 118.489
p-value < 0.001

Slope Variance – Est. = 0.691
SE = 0.308
p-value = 0.025

– Est. = 3.351
SE = 1.229
p-value = 0.006

Residual Variance Est. = 0.014
SE = 0.002
p-value < 0.001

Est. = 8.392
SE = 1.026
p-value < 0.001

Est. = 0.035
SE = 0.004
p-value < 0.001

Est. = 328.371
SE = 25.262
p-value < 0.001

Fig. 3. Neural timing becomes faster over time within childhood. Plotted are the frequency following responses (FFRs) to speech in the time domain for all children at age 3
(darkest blue, top left) through age 8 (lightest grey, bottom left). Waveforms for the six age points are overlaid on the right.
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Fig. 4. Spectral coding becomes stronger over time in childhood. Top panel: frequency following responses (FFRs) to speech are plotted in the frequency domain for all
children at age 3 (darkest blue) through age 8 (lightest grey). Bottom panel: spectral amplitudes at each frequency. Please note, the bottom panel’s x-axes are scaled with 40
hertz (Hz) bins centered around each frequency/harmonic of interest [e.g., fundamental frequency (F0) x-axis: 80 Hz to 120 Hz]. Y-axis values are scaled to best illustrate
effects of age.

Fig. 5. Response stability improves over time in childhood. Plotted are two sub-averages (rep 1 and rep 2; 2000 sweeps each) of frequency following responses (FFRs) to
speech. Response stability is calculated by taking the Pearson product-moment correlation coefficient (r) of these two sub-averages.
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Table 4
Pearson’s correlations between neural measures, controlling for age. Provided are the Pearson correlation coefficients (r) and p-values (p) for each correlation.

Neural timing Spectral coding Response stability Nonstimulus activity

Neural timing – – – –
Spectral coding r = �0.400

p < 0.001
– – –

Response stability r = �0.217
p < 0.001

r = 0.656
p < 0.001

– –

Nonstimulus activity r = �0.086
p = 0.75

r = 0.158
p = 0.001

r = �0.446
p = 0.001

–
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4. Discussion

4.1. Auditory neurophysiological development evident in childhood

Using the novel application of growth curve modeling, we show
that the neural processing of speech continues to mature within
individuals over the course of childhood: neurophysiological
responses become earlier, more robust, and more stable. In addi-
tion to providing longitudinal evidence of central auditory system
development throughout this age range, these results demonstrate
there are individual differences in neural processing of various
sound ingredients, and that for some of these ingredients (i.e.,
spectral coding), there are individual differences in how neural
development unfolds over time.

These findings align with cross-sectional evidence showing
neurophysiological development of the auditory system. Using
the FFR, age-related differences in neural processing of timing
and frequency information have been observed in infants, 1 to
3 months of age (Jeng et al., 2010) and 3 to 10 months of age
(Anderson et al., 2015), as well as children, ages 3–5 and 8–12 years
(Johnson et al., 2008). In addition, changes in timing and spectral
coding, as well as response stability and nonstimulus activity occur
across the lifespan (Krizman et al., 2019; Skoe et al., 2015). These
studies show evidence of multiple maturational timelines for mea-
sures of subcortical processing, and that development of these
measures continues through late childhood (ages 3–8). Through
our use of a different speech stimulus and a large longitudinal sam-
ple, the present findings reinforce these cross-sectional observa-
tions, yet for the first time show developmental changes are
evident between- and within-individuals.
4.2. Auditory neurophysiological changes parallel perceptual
development

These findings also align with psychophysical evidence showing
gradual auditory perceptual development over the first decade of
life (Sanes and Woolley, 2011). For example, temporal integration,
one aspect of temporal processing and the process in which infor-
mation is summed over time, develops through age 6 when tested
with experimental paradigms of duration discrimination (Jensen
and Neff, 1993), gap detection (Wightman et al., 1989), and the
precedence effect (Litovsky, 1997). Here, we examined temporal
processing through a measure of neural timing, and found that as
children age, processing of sound becomes faster (i.e., earlier laten-
cies). Nervous system timing (latency) is inversely related to white
matter density (Eggermont and Moore, 2012), and latency changes
are likely to reflect a rapid increase of axonal myelination through-
out the auditory system (Moore and Linthicum, 2007). Given the
parallel between these two lines of research, and the objectivity
of the FFR approach, our results corroborate the psychophysical
evidence. Importantly, we show that sensory processing develops
without relying on behavioral tests whose interpretation can be
complicated by cognitive influences, such as attention.
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Also in line with the psychophysical literature is our finding
that spectral coding changes over the course of early childhood.
In terms of auditory perceptual indices of spectral processing, fre-
quency resolution matures early on, reaching adult-like levels by
6 months of age (Spetner and Olsho, 1990). In contrast, more com-
plex spectral processing matures later in childhood. For example,
frequency discrimination, a task that requires one to detect differ-
ences in frequency presented successively, matures around age 10
for low frequency tones (Maxon and Hochberg, 1982). Tasks
requiring detection of frequency and amplitude modulations, cues
that are important for speech perception, follow a relatively pro-
longed timeline, such that maturation continues beyond age 12
(Banai et al., 2011). Task-related differences in maturational trajec-
tories illustrate how some perceptual tests draw on fundamental
cochlear mechanisms (i.e., ‘‘hearing”) that matures early in life,
while others involve auditory and non-auditory centers that follow
a longer developmental course. Our finding that spectral coding
develops throughout childhood suggests that this measure could
be an index of complex sound processing that offers objectivity
into the maturation of frequency representation.

While neural timing and spectral coding have perceptual ana-
logs, response stability does not. Response stability is thought to
be an index of how replicable the nervous system represents a
stimulus over time (Hornickel and Kraus, 2013; Krizman and
Kraus, 2019), reflecting both the brain’s endurance and reliability
within a testing session. Although no behavioral indices exist to
draw a direct comparison, theoretically, response stability might
inform our knowledge of ‘‘internal noise”, or within-individual
variability. In Signal Detection Theory, one assumption is that ‘‘in-
ternal noise” can increase variance in perceptual indices
(MacMillan, 2002). For example, infants are considered ‘‘broad-
band listeners” with more internal noise; over time, internal noise
decreases and infants tune in to specific sound features rather than
rely on a Gestalt representation (Saffran et al., 2007; Werner, 1996;
Werner et al., 2012). After infancy, internal noise in the auditory
system continues to decrease from childhood to adulthood across
a range of tasks, including intensity discrimination (Buss et al.,
2006, 2009) and detections of tones in noise (Allen and
Wightman, 1994). In the present study, we see responses become
more consistent over time. This finding could reflect 1) the gradual
dissipation of internal noise within childhood, 2) that neural
encoding of stimulus features is more equivalent across trials, or
3) both. Future research is needed to further understand this neu-
rophysiological parameter, and how developmental changes in
response stability may be tied to changes in behavior (e.g., reading
disorders (Hornickel and Kraus, 2013)). Furthermore, while
response stability may grossly reflect ‘‘internal noise”, the possibil-
ity of other noise sources influencing this measure remains. Future
research is necessary to disentangle the contribution of neural
from non-neural noise of this parameter specifically, as well as
the other measures examined in this study.

The growth curve model examining the development of non-
stimulus activity fit poorly, perhaps due to a few reasons. First, a
‘‘poor fit” of a growth curve might be driven by noisy data, where



E.C. Thompson, R. Estabrook, J. Krizman et al. Clinical Neurophysiology 132 (2021) 2110–2122
between- and within-individual changes are too variable to be
modeled statistically. Such a result could arise because the mea-
sure of interest reflects both internal and external noise. Indeed,
the ICC for nonstimulus activity was relatively weak (q = 0.294),
suggesting this neurophysiological measure reflects more variabil-
ity and/or noise in any given observation relative to the other neu-
rophysiological measures. One other possible contributor to a
poorly fitting model is multiphasic growth (i.e., more than one
growth phase). Unfortunately, to determine whether or not a sam-
ple follows a multiphasic growth pattern requires a large number
of subjects, one which exceeds the present sample size. Future
research should examine how nonstimulus activity relates to gen-
eral indices of neural and non-neural noise and should extend the
sample size to a number sufficient to determine if nonstimulus
activity development follows a multiphasic—rather than linear–
growth trajectory.

4.3. Investigating neurophysiological development using growth curve
modeling

For many years, neurophysiologic development of the auditory
system was assessed using the auditory brainstem response, which
is believed to be adult-like by about 18 months (Jerger and Hall,
1980). This led to the assumption that the auditory system was
stable by the second year of life. However, many investigations
in the past few decades have revisited the notion of auditory sys-
tem development, revealing maturation through at least young
adulthood (Krizman et al., 2019; Ponton et al., 2000; Skoe et al.,
2015). While these studies made considerable headway in redefin-
ing the notion of auditory system development, they did so using a
cross-sectional approach, leaving the possibility that between-
individual changes differ from within-individual changes. Few
examinations have adopted a longitudinal approach to understand
within-individual changes in the auditory system, and whether or
not there are individual differences in rates of change. In the pre-
sent study, we use a large sample to provide evidence that rein-
forces these cross-sectional examinations, yet shows for the first
time that auditory changes are evident within individuals.

Neurophysiological data were analyzed using growth curve
modeling, a statistical approach that is burgeoning in the fields
of social, psychological, and behavioral sciences due to advance-
ments in technology and computing. Although the benefits of
growth curve modeling are many, the number of neurophysiolog-
ical investigations employing this approach are few. Our novel
application of this statistical approach merits a discussion of its
advantages and limitations.

One advantage of growth curve modeling is that it permits the
inclusion of all data points collected on an individual. This is in
contrast to traditional statistical approaches, such as repeated
measures analysis of variance, which require a complete dataset
for included individuals and therefore excludes those that do not
meet this requirement. In growth curve modeling, each data point
adds value to a model, even if data was collected at only one time
point (i.e., cross-sectional) or a subset of those time points (such as
years 1, 2, and 3 in a 4-year study). Though technically not longi-
tudinal data, individuals with one time point of data add value to
the growth curve model by informing the distribution of that indi-
vidual’s age range that would otherwise not be known. However,
while these ‘‘cross-sectional” data points add value to a growth
curve, it is important to note that the relative value is small in com-
parison to individuals with multiple time points of data collected;
in our case, those with five years’ worth of data added the most
value to the model.

A second advantage of growth curve modeling is the ability to
characterize the functional form of developmental changes, such
as linear or non-linear trends. Here, we see that the growth in
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our longitudinal data was linear, rather than cubic or quadratic.
In other words, developmental changes occurred steadily and
gradually over time. This result is novel, especially considering
the non-linear developmental path of many skills and behaviors
(e.g., language acquisition) (Bates et al., 1995). Though we do not
suspect linear changes to continue throughout the lifespan (cf.
Skoe et al. 2015) it is interesting to think of this age range as a lin-
ear developmental period.

A third and final advantage of growth curve modeling is the sta-
tistical determination of individual differences and individual dif-
ferences in rates of change. Here, we see that there are individual
differences across the parameters, suggesting auditory processing
of neural timing, spectral coding, and response stability are likely
explained by differences in genetics, environmental factors, etc.
Moreover, individual differences with respect to change were evi-
dent in spectral coding development, meaning there is more than
one maturational path in this age range. In contrast, we did not
see individual differences in rates of change for neural timing or
response stability measures. This is not to say that individual dif-
ferences do not exist; rather, our dataset does not support this
result. Future studies are needed to investigate differential rates
of change with respect to neural timing and response stability in
childhood auditory development.

One drawback of growth curve modeling is the necessity of a
large sample, which for developmental investigations might prove
unrealistic. While we provide results that were sufficiently pow-
ered, a greater number of individuals would be needed to investi-
gate how, and why children develop at distinct rates. To address
the question of whether or not the neural measures reflect distinct
processes in our data, Pearson correlations were run to determine
collinearity. No strong correlations (r > 0.9) were observed
between the neurophysiological measures at any age group, sug-
gesting these indices reflect distinct features of auditory nervous
system function.

4.4. Links between auditory development & communication skills

Throughout childhood, the auditory system plays a large role in
the acquisition of many communication skills. For example, read-
ing involves mapping sounds to meaning, while speech perception
requires parsing relevant from irrelevant information within an
incoming auditory stream. Strength of auditory-
neurophysiological sound processing is linked to a number of these
communication skills. For example, enhancements in temporal and
spectral coding are related to school-aged children’s ability to hear
in noisy environments (Anderson et al., 2010b, 2010a). For
preschool-aged children, development of the fundamental fre-
quency of speech (one frequency included in our spectral coding
measure) tracks with improvements in hearing in noise
(Thompson et al., 2017). Literacy and reading competencies are
linked to neural stability (Centanni et al., 2014; Hornickel and
Kraus, 2013), auditory system timing (Ahissar et al., 2000; Banai
et al., 2009) and processing of detailed acoustic features such as
consonants (Kraus et al., 1996; Tallal, 1980).

To understand the relationship between neural processing of
sound and clinical disorders, a critical first step is to determine
how these auditory neurophysiological measures mature in a typ-
ically developing population, with the ultimate goal to improve
clinical diagnostics and interventions. Given the links between
auditory function and communication, an objective approach like
the FFR, could provide a more reliable method for identification
and diagnosis of developmental disorders related to reading and
language, including developmental dyslexia and specific language
impairment. For example, as an objective index of distinct facets
of auditory maturation, the FFR could reveal aberrant patterns of
development that suggest delays earlier. Future studies should
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examine deviations in auditory development in clinical popula-
tions, and/or how abnormal auditory system development could
contribute to disordered sound processing.

4.5. Future directions

Participants in this study were monolingual English speakers
from similar socioeconomic backgrounds, and therefore reflect a
small subset of the broader population. Future research should
investigate the influence of second language experience and
socioeconomic standing on the neurophysiological development
of the auditory system. This is especially important as previous
research shows spectral coding, response stability, and nonstimu-
lus activity vary along socioeconomic dimensions in adolescents
(Skoe et al., 2013) and based on language experience (Krizman
et al., 2012; Skoe et al., 2017). Second, future research should
investigate how performance on language or auditory tests track
with objective auditory system development, as indexed by the
FFR, to determine behavioral consequences of neurophysiological
maturation. A third line of future research is the investigation of
auditory maturation prior to 3 and 4 years of age. While a few
studies have demonstrated auditory system development evolves
over the first two years of life, a gap in the literature between
10 months and 3 years of age remains. A systematic, longitudinal
examination is needed to confirm these maturational changes
and to fully understand auditory development from the onset.
5. Conclusion

Through a large longitudinal dataset analyzed through growth
curve modeling, we observe the sharpening of neurophysiological
processing of sound within individuals in childhood: neural timing
became faster, spectral coding stronger, and response stability
more consistent over time. These findings align with the percep-
tual and cross-sectional investigations of auditory development,
and show that auditory maturation extends into late childhood
using an objective and longitudinal approach.
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