What is auditory neuropathy (AN)?

- Hearing disorder affecting the connections between the ear and the brain.
- Classic diagnostic definition: Absent ABRs despite present OAEs¹.
- Better definition: A hearing phenotype characterized by a lack of subcortical neural synchrony, manifesting as absent ABRs that cannot be explained by sensorineural or conductive hearing loss.
- Causes: unknown, genetic, or acquired (typically acute illness in infancy, such as hyperbilirubinemia).
- CDC estimates about 5-7% of pediatric hearing loss cases are AN².

AN is a relatively new hearing disorder

- First identified in the early 1980's³, "auditory neuropathy" coined in the 1990's⁴.
- Not mainstream consideration for pediatric hearing loss until late 1990's/early 2000's.
- As a result, the first major cohort of AN patients are now in their 20's.
- There may also be adults with hearing problems attributable to undiagnosed AN.

Evaluating hearing in AN is challenging

- Auditory function can fluctuate .
- AN is not mutually exclusive from sensorineural hearing loss
- Tremendous variability *within* the AN population itself.
- But, two clinical hallmarks: absent or grossly abnormal ABRs and absent acoustic reflexes.

Expected results from comprehensive hearing evaluation

Test	Expected Results	Comments
Tymps	Normal	
Acoustic Reflexes	Always absent	Red flag, particularly in children where an ABR study is difficult
OAEs	Typically present, but variable	Typically OAE amplitudes are larger than normal, but can be absent or disappear over time
Audiograms	Variable	Runs the gamut from completely normal to moderate-severe sensorineural hearing loss
ABRs	Always absent	Easy to mistake cochlear microphonic for ABR
MLRs	Typically present	
CAEPs	Typically present	
Speech in Quiet	Typically normal	Usually excellent, assuming accounting for audibility in cases of SNHL
Speech in Noise	Severely impaired	Substantial difficulty hearing speech in noise

¹ Thus the importance of using OAEs and ABRs in newborn hearing screening!

Hearing Problems

- Inconsistent response to sound
- Poor sound awareness
- Extraordinary difficulty listening in noise

² https://www.cdc.gov/ncbddd/hearingloss/2018-data/14-type-and-severity.html

³ Kraus et al. (1984) Laryngoscope

⁴ Starr et al. (1996) Brain

AN listeners have extreme difficulties understanding speech in noise, but normal recognition in quiet

- Word recognition: similar to controls in quiet, identify 50-75% fewer words in noise⁵.
- Sentence recognition: similar to controls in quiet, but <1st percentile in noise⁶.
- Listening with 2 ears boosts sentence recognition considerably.

AN listeners struggle to process fast temporal cues in sound

- Poor at detecting a brief tone embedded in noise⁷.
- Perceptual and neurophysiological (MMN) evidence of poor processing of temporal contrasts in speech sounds, such as /b/ vs. /g/⁸, but, normal processing of slower temporal contrasts, such as /b/ vs. /w/.

AN listeners do not exhibit a frequency-following response (FFR). confirming the FFR relies on subcortical neural synchrony

- Double dissociation: subcortical neural synchrony necessary and sufficient for FFR; auditory cortices necessary and sufficient for CAEPs. ⁹
- Even for stimuli within the range of auditory cortex phaselocking, subcortical neural synchrony is necessary to generate the FFR¹⁰; cortical activity may contribute.

AN provides fundamental insights into the importance of subcortical neural synchrony

- Neural synchrony is necessary to hear in noise and generate an FFR.
- FFR requires subcortical synchrony. FFR reflects neural mechanisms underlying speech-in-noise recognition.
- Normal OAEs and hearing thresholds do not guarantee normal auditory function.
- By extension, mild forms of dyssynchrony may account for everyday listening challenges¹¹.

Our speculations about AN and what it tells us about normal hearing

- Lack of acoustic reflexes means AN listeners live without the ear's protective mechanisms in noise. This may elevate risk of developing sensorineural hearing loss in adulthood.
- AN illustrates important role of binaural hearing to recognize speech in noise.
- Subcortical synchrony is important for sound awareness ability to detect a new sound amid a complex soundscape.

For more information: www.brainvolts.northwestern.edu

⁵ Kraus et al. (2000) JARO

⁶ White-Schwoch et al. (2020) *JAMA-Oto* ⁷ Kraus et al. (2000) *JARO*

⁸ Kraus et al. (1993) *Ear Hear*; Kraus et al. (2000) *JARO*

⁹ White-Schwoch et al. (2019) J Neurophysiol

¹⁰ White-Schwoch et al. (2021) *J Neurophysiol*

¹¹ Anderson et al. (2012) J Neurosci