
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

Research paper

A dynamic auditory-cognitive system supports speech-in-noise
perception in older adults

Samira Anderson a,b,e, Travis White-Schwoch a,b, Alexandra Parbery-Clark a,b,
Nina Kraus a,b,c,d,*

aAuditory Neuroscience Laboratory, Northwestern University, Evanston, IL 60208, USA1

bDepartment of Communication Sciences, Northwestern University, Evanston, IL 60208, USA
cDepartment of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
dDepartment of Otolaryngology, Northwestern University, Chicago, IL, 60611, USA
eDepartment of Hearing and Speech Sciences, University of Maryland, 0100 LeFrak Hall, College Park, MN 20742, USA

a r t i c l e i n f o

Article history:
Received 30 October 2012
Received in revised form
6 March 2013
Accepted 12 March 2013
Available online 27 March 2013

a b s t r a c t

Understanding speech in noise is one of the most complex activities encountered in everyday life, relying
on peripheral hearing, central auditory processing, and cognition. These abilities decline with age, and so
older adults are often frustrated by a reduced ability to communicate effectively in noisy environments.
Many studies have examined these factors independently; in the last decade, however, the idea of an
auditory-cognitive system has emerged, recognizing the need to consider the processing of complex
sounds in the context of dynamic neural circuits. Here, we used structural equation modeling to evaluate
the interacting contributions of peripheral hearing, central processing, cognitive ability, and life expe-
riences to understanding speech in noise. We recruited 120 older adults (ages 55e79) and evaluated
their peripheral hearing status, cognitive skills, and central processing. We also collected demographic
measures of life experiences, such as physical activity, intellectual engagement, and musical training. In
our model, central processing and cognitive function predicted a significant proportion of variance in the
ability to understand speech in noise. To a lesser extent, life experience predicted hearing-in-noise ability
through modulation of brainstem function. Peripheral hearing levels did not significantly contribute to
the model. Previous musical experience modulated the relative contributions of cognitive ability and
lifestyle factors to hearing in noise. Our models demonstrate the complex interactions required to hear in
noise and the importance of targeting cognitive function, lifestyle, and central auditory processing in the
management of individuals who are having difficulty hearing in noise.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The ability to understand speech in noise involves a complex
interplay of sensoryand cognitive factors (Pichora-Fuller et al.,1995).
This is especially true for older adults, whomust compensate for the

deterioration in peripheral sensory function that accompanies aging
(Wong et al., 2010; Peelle et al., 2011). Three hypotheses have been
proposed to explain the mechanisms underlying age-related dete-
rioration in hearing in noise ability; they involve peripheral, central,
and cognitive processes (CHABA, 1988; Humes, 1996) However, the
age-related decline in speech-in-noise perception (SIN) is not inev-
itable; indeed, recent evidence demonstrates the beneficial effects of
life-long experience (i.e., playing a musical instrument) in offsetting
age-related effects on speech-in-noise perception in older adults
(Parbery-Clark et al., 2011a; Zendel and Alain, 2012). Even in the
absence of intensive perceptual training, there is evidence for wide
variability in speech-in-noise performance in older adults (McCoy
et al., 2005; Harris et al., 2009; Schvartz et al., 2008). To under-
stand this variability, we must consider the relative contributions of
cognitive, central, and peripheral functions to hearing in noise in the
aging auditory system.

Abbreviations: cABR, auditory brainstem response to complex sounds; IC, infe-
rior colliculus; IQ, intelligence quotient; DPOAE, distortion product otoacoustic
emission; SNR, signal-to-noise ratio; SES, socioeconomic status; NAL-R, National
Acoustics Laboratory-Revised amplification algorithm; SPL, sound pressure level;
FFT, Fast Fourier Transform; Q-N, quiet-to-noise; SEM, structural equation
modeling; RMSEA, root mean square error of approximation; PTA, pure tone
average; SIN, speech in noise; fMRI, functional magnetic resonance imagining; SD,
standard deviation; SE, standard error; Cog, Cognition
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1.1. Aging auditory system

Aging may affect speech-in-noise perception and central audi-
tory processing in individuals with and without hearing loss,
indicating the possibility that aging affects speech processing even
when the signal is audible (Grose and Mamo, 2010; Gordon-Salant
et al., 2006; Gordon-Salant and Fitzgibbons, 1993; Dubno et al.,
1984; Poth et al., 2001; Harris et al., 2010; Vander Werff and
Burns, 2011). In a meta-analysis Humes et al. (2012) concluded
that age-related speech comprehension deficits arise from
decreased peripheral and cognitive function. Peripheral and
cognitive factors can affect performance on tests of central auditory
processing, but there is no evidence in the perceptual literature to
support declines that are specific to central processing itself. The
studies examined by the meta-analysis all used behavioral mea-
sures of central auditory processing. While documentation of
behavioral performance is important, it is also useful to consider
aging effects on objective neural measures of speech. Indeed,
studies documenting biological processing deficits have led to a
better understanding of the impairments in spectral and temporal
processing in older adults (Anderson et al., 2012; Eckert et al., 2012;
Ruggles et al., 2012; Schatteman et al., 2008). To date, however, they
have not directly assessed the complex interactions among sensory,
cognitive, and lifestyle factors that are in play when listening in
noise.

Wingfield et al. (2005) argue that peripheral, central, and
cognitive factors should not be examined independently but
instead as a dynamic, integrated system to fully understand the
difficulties encountered by older adults when listening in noise.
This kind of study was undertaken by Humes et al. (1994) for older
individuals (ages 63e83). Using canonical analysis, they found that
hearing loss accounted for the largest share of variance in speech
recognition measures, but cognitive function also contributed to
speech recognition in noise. Here, we aimed to expand on aspects
of the Humes et al. study by including life experience factors and
neural measures of speech processing, modeling speech-in-noise
perception vis-à-vis recent theories of an integrated auditory-
cognitive system (Holt and Lotto, 2008).

1.2. Auditory object: role of cognition

Deciphering sounds in noise begins by forming a representation
of an auditory object, allowing the listener to identify the sound
(Bregman, 1990; Shinn-Cunningham and Best, 2008). For example,
identifying a sound as the voice of a particular friend relies on the
accurate representation of speech cues, such as spectral and spatial
cues (Du et al., 2011). Once an individual uses these cues to lock
onto a particular voice, he is better able to follow that voice in the
conversation, a process known as stream segregation (Bregman and
Campbell, 1971). Recently, physiologic evidence for stream segre-
gation has been found in the auditory cortex; neural activity is
selectively synchronized to the talker being attended to within a
complex stream of sound (Ding and Simon, 2012; Mesgarani and
Chang, 2012). When peripheral hearing loss and/or impaired
auditory processing prevents the formation of a clear auditory
object, however, the listener must rely on cognitive skills to facili-
tate top-down strengthening of an auditory signal (Nahum et al.,
2008; Shinn-Cunningham and Best, 2008; Wingfield et al., 2005).
Older listeners, too, rely on cognitive resources to facilitate
comprehension (Pichora-Fuller et al., 2006; Pichora-Fuller, 2008),
as declines in central auditory processing may hamper their ability
to form an auditory object e even if audibility is corrected. For
example, older adults draw from the prefrontal cortex e specif-
ically, areas associated with memory and attention e to compen-
sate for slower speed of processing or lack of clarity in sensory input

(Wong et al., 2009). In fact, the volume (left pars triangularis) and
thickness (superior frontal gyrus) of these prefrontal areas is
related to speech-in-noise performance, but only in older adults
(Wong et al., 2010). In younger adults, functional imaging reveals
activity limited to the superior temporal gyrus (Wong et al., 2010),
an area involved in auditory processing (Zatorre and Belin, 2001),
language processing (Friederici et al., 2000), perception of facial
emotions (Radua et al., 2010), and social cognition (Bigler et al.,
2007). Moreover, older adults use linguistic knowledge (i.e., se-
mantic and syntactic context of the sentence) to compensate for
deficits in speech-in-noise perception arising from reduced pro-
cessing speed; however, failing fluid memory abilities limit the
ability to take advantage of this knowledge (Wingfield, 1996). This
difficulty is compounded by older adults’ frequent belief that they
have correctly heard information they have in fact misperceived,
especially when relying on context (Rogers et al., 2012); for this
reason they may not ask for repetition or clarification. Because
older adults who exhibit this “false hearing” are also likely to
exhibit “false seeing” (Jacoby et al., 2012) or “false memory” (Hay
and Jacoby, 1999), Jacoby and colleagues suggested that this
convergence reflects a general deficit in frontal-lobe function. Im-
pairments in executive function (i.e., inhibitory control) may also
affect hearing in noise such that older adults are more easily
distracted by novel auditory or visual stimuli, reducing their ability
to selectively focus on the words spoken by a single speaker
(Andrés et al., 2006).

1.3. Life experience

Although numerous studies have documented the effects of
peripheral hearing loss, impaired central auditory processing, and
reduced cognitive ability on speech-in-noise perception, relatively
little is known about the modulating effects of life experiences.
There is, however, some encouraging evidence that long-term life
experiences affect the ability to hear in background noise. For
example, musicianship offset the effects of aging on subcortical
neural timing (Parbery-Clark et al., 2012) and is linked to better
hearing in noise, auditory working memory, and temporal pro-
cessing in older adults (Parbery-Clark et al., 2011a; Zendel and
Alain, 2012). High socioeconomic status, which is associated with
higher levels of education and improved physical and cognitive
health (Luo and Waite, 2005), may offset age-related declines in
memory and other cognitive abilities (Czernochowski et al., 2008;
Matilainen et al., 2010).

Life experiences that might modulate cognitive or neural sys-
tems are not limited to those that have occurred throughout the
lifetime; current lifestyle activities can also play a role. For example,
benefits of even a moderate amount of physical exercise are seen in
overall cognitive health, including memory, attention, and execu-
tive function (Netz et al., 2011). The benefits of physical activity are
also evident in brain structures; moderate aerobic exercise in-
creases the size of the hippocampus (Erickson et al., 2011), the
putative site of episodic memory consolidation (Nadel and
Moscovitch, 1997) and spatial navigation (Maguire et al., 2000).

Intellectual engagement may also benefit hearing in noise.
Although the concept of “use it or lose it” as it relates to cognitive
function is controversial (Swaab,1991; Hultsch et al., 1999), positive
associations between intellectual engagement and cognitive abili-
ties have been demonstrated (as reviewed in Salthouse, 2006). For
example, lifelong intellectual activity is associated with reduced
levels of b-amyloid protein, a primary component of the amyloid
plaques found in individuals with Alzheimer’s disease (Landau
et al., 2012). Engagement in activities involving high cognitive de-
mands leads to a thicker cortical ribbon and increased neuronal
density in Brodmann area 9 (Valenzuela et al., 2011), an area of the
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dorsolateral prefrontal cortex associated with inhibitory control in
attentional selection (Dias et al., 1996), an important constituent
mechanism of auditory stream segregation (Kerlin et al., 2010).
Long-term engagement in these activities is best, but initiating
these activities late in life benefits cognitive speed and perfor-
mance consistency (Bielak et al., 2007; Smith et al., 2009). Taken
together, these lifestyle factors may improve speech-in-noise
perception skills by strengthening the compensatory mecha-
nisms, especially the cognitive mechanisms that older adults rely
on in the face of declines in peripheral and sensory processing.

1.4. Inferior colliculus e Top-down meets bottom-up

Theauditorybrainstemresponse to complex sounds (cABR), a far-
field electrophysiological recording, offers a possible means for
examining the reciprocal connections of sensory and cognitive cir-
cuits involved in speech-in-noise perception (as reviewed in
Anderson andKraus (2010)). The inferior colliculus (IC), theprinciple
midbrain nucleus of the auditory pathway, is a site of intersection for
numerous ascending and descending neural fibers (Ma and Suga,
2008) and is the putative generator of the cABR (Chandrasekaran
and Kraus, 2010). The role of the IC in auditory learning has been
demonstrated in animal models; for example, pharmacological
disruption of the descending corticocollicular pathway prevents
auditory learning in new circumstances (Bajo et al., 2010). In
humans, the IC plays an important role in learning as well; in one
study, Chandrasekaran et al. (2012) found that increased IC repre-
sentation of pitch patterns, which distinguished words in a novel
language, was associated with better perceptual learning. The cABR
also reflects themodulating influences of both short- and long-term
experiences on thenervous system, as evidencedbymusical training
(Bidelman et al., 2009;Wong et al., 2007; Skoe and Kraus, 2012) and
language experience (Krishnan et al., 2008, 2005). Subcortical pro-
cessing of speech in noise can also be modified by short-term (Song
et al., 2012; Anderson et al., 2013b) and long-term training
(Bidelman and Krishnan, 2010; Parbery-Clark et al., 2009).

Because IC activity reflects top-downmodulation as well as local
effects, such as age-related decreases in levels of inhibitory neu-
rotransmitters (Caspary et al., 2005) and desynchronized neural
firing (Hughes et al., 2010; Anderson et al., 2012), we expect that
measures reflecting brainstem processing will contribute to a
model of sensory-cognitive interactions in speech-in-noise
perception. Given that the robustness of brainstem pitch and har-
monic encoding (Anderson et al., 2011) and resistance to the
degradative effects of noise (Parbery-Clark et al., 2009) are impor-
tant factors in speech-in-noise perception, we have selected these
measures of brainstem processing in our models to accompany
peripheral and cognitive measures. We also expect that life expe-
riences (exercise, intellectual engagement, socioeconomic status,
and musicianship) influence the compensatory mechanisms that
are engaged while listening in noise.

1.5. Current study

We hypothesized that speech-in-noise perception in middle-
and older-aged adults relies on interactions of sensory, central, and
cognitive factors, and that each of these factors makes distinct
contributions both directly and indirectly through top-down
modulation. We examined peripheral auditory function, cognitive
ability, central auditory processing, and life experience in a large
group of older adults. We took three approaches to testing our
hypothesis, each involving a different statistical model. In the first
model, we used exploratory factor analysis to identify latent con-
structs (i.e., inferred underlying mechanisms) in our dataset. The
factors were: (1) cognition (short-term memory, auditory working

memory, auditory attention), (2) life experiences (intellectual
engagement, physical activity, socioeconomic status), (3) central
processing (brainstem measures of pitch, harmonics, and effects of
noise), (4) peripheral hearing function (audiometric thresholds,
otoacoustic emissions), and (5) speech-in-noise perception (three
behavioral measures); these measures were therefore selected for
subsequent models. In the second model we used structural
equation modeling to do a confirmatory analysis of our hypotheses,
determining the contributions of these factors, and their in-
teractions to hearing in noise. In the third model we compared
group differences in compensatory mechanisms for age-related
decreases in speech-in-noise performance based on a history of
musical training. We then used linear regression modeling to
confirm the findings of structural equation modeling.

2. Methods

2.1. Participants

120 middle- and older-aged adults were recruited from the
greater Chicago area (ages 55e79 years; mean 63.89, S.D. 4.83; 49
male). No participants had a history of a neurologic condition or
hearing aid use. All participants had normal IQs (�95 on The
Wechsler Abbreviated Scale of Intelligence; WASI; Zhu and Garcia,
1999), age-normal click-evoked auditory brainstem responses
bilaterally (Wave V latency <6.8 ms measured by a 100 ms click
presented at 80 dB SPL at 31.25 Hz) and normal interaural Wave V
latency differences (<0.2 ms, Hall, 2007).

2.2. Peripheral function e hearing

2.2.1. Audiometry
Air conduction thresholds were obtained bilaterally at octave

intervals 0.125e8 kHz, with interoctave intervals at 3 and 6 kHz. All
participants had pure tone averages (PTA; average threshold from
0.5 to 4 kHz) �45 dB HL and average thresholds from 6 to 8 kHz
�80 dB HL. Thirty-nine participants (9 male) had normal hearing
(defined as air conduction thresholds �20 dB HL at all frequencies).
There were no asymmetries noted between the ears (>15 dB HL
difference at two or more frequencies) nor were there any air-bone
conduction gaps (>15 dB HL difference), meaning no conductive
hearing losses were noted.

2.2.2. Otoacoustic emissions
Distortion product otoacoustic emissions (DPOAEs) were

collected to measure cochlear outer hair cell function with SCOUT
3.45 (Bio-Logic Systems Corp., a Natus Company, Mundelein, IL).
DPOAEs were assessed bilaterally from 0.75 to 8 kHz and we used
the average amplitude of the distortion product across the fre-
quency range as our measure.

2.3. Speech-in-noise perception measures

The QuickSIN is a non-adaptive clinical measure that is sensitive
to performance differences between normal hearing and hearing
impaired groups (Wilson et al., 2007). Four lists of six syntactically
correct, low context sentences are presented binaurally at 70 dB HL
through insert earphones (ER-3A, Etymotic Research, Elk Grove
Village, IL). The sentences, spoken by a female, are masked by a
background noise of four-talker babble (three female, one male),
with the first sentence in each set at a þ25 dB signal-to-noise ratio
(SNR) and the SNR decreasing by 5 dB for each subsequent sentence
down to a 0 dB SNR. Participants are asked to repeat each sentence
as best they can. Each sentence contains five target words, and the
participant scores a point for each one that they identify. The total
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number of words correctly repeated (maximum 30) is subtracted
from 25.5 to obtain the SNR loss (dB), defined as the difference
between an individual’s speech-in-noise threshold and the average
speech-in-noise threshold (Killion et al., 2004). The SNR loss scores
are averaged across four lists to obtain the final SNR loss. Lower
scores correspond to better hearing in noise.

The Words-in-Noise test (WIN) is a non-adaptive clinical mea-
sure (Wilson et al., 2007), chosen for its low memory and lexical
demands. Participants are asked to repeat single words spoken by a
female voice masked by four-talker babble (three female and one
male) presented at 70 dB HL binaurally through insert earphones
(ER-3A). Thirty-five words are presented starting at a 24 dB SNR
and decreasing by 4 dB every five words until 0 dB SNR is reached.
The final SNR score is based on the number of correctly-repeated
words; lower scores indicate better performance.

The Hearing in Noise Test (HINT) is an adaptive clinical measure
(Nilsson et al., 1994). Participants repeat short and semantically/
syntactically simple sentences from the BencheKowaleBamford
sentence set (Bench et al., 1979) masked by speech-shaped back-
ground noise. Sentences are presented binaurally through insert
earphones (ER-5A, Etymotic Research). The National Acoustics
Laboratory-Revised (NAL-R; see Stimulus, below) amplification al-
gorithm is applied in individuals with hearing loss. For all subjects,
speech-shaped noise is set at 65 dB SPL and the intensity of the
sentences is increased or decreased adaptively until a threshold
SNR is determined, defined as the speech-noise level difference (in
dB) at which the participant repeats 50% of the sentences correctly.
A lower SNR indicates better performance.

2.4. Cognitive measures

The Auditory Attention Quotient (AAQ) from the Integrated Vi-
sual and Auditory Continuous Performance Test of Attention (IVAþ,
www.braintrain.com) was used to measure sustained attention.
The IVAþ is a computer-based 20 min “go - no go” test with 500
trials of either the number 1 (go cue) or 2 (no go cue) presented in a
pseudorandom order in visual and auditory modalities; a practice
run ensures that stimuli are viewable and audible. Responses are
converted to age-normed standard scores. A higher score indicates
better performance.

Auditory short-term memory was assessed by the Memory for
Words subtest of the Woodcock-Johnson III Tests of Cognitive
Ability (Woodcock et al., 2001). Participants repeat sequences of up
to 7 words in the same order as the presentation. Words are pre-
sented by a CD at a comfortable intensity. Age-normed scores are
used for analysis, and higher scores indicate better performance.

Auditory working memory was measured by the Auditory
Working Memory subtest of the Woodcock-Johnson III Tests of
Cognitive Ability. Participants are presented a series of 2e8 inter-
leaved nouns (animals or food) and numbers, and are then
instructed to repeat back the sequence by first parsing the nouns,
and calling them out in their order of presentation, and then doing
the same for the numbers. Stimuli are presented by a CD at a
comfortable and audible intensity. Age-normed scores are used for
analysis, and higher scores indicate better performance.

2.5. Life experience reports

Subjects self-reported life experiences pertinent to overall
physical and cognitive health. Socioeconomic status (SES) was
evaluated using educational criteria, a common metric which re-
lates to other SES factors such as income (Farah et al., 2006;
D’Angiulli et al., 2008). Subjects reported maternal and self-
education levels on two Likert-type scales ranging from 1 to 4
(highest education level: middle school, high school/equivalent,

college, or graduate/professional, respectively). The sum of these
two scores was the SES level, and so scores ranged from 2 to 8. An
intellectual engagement composite score was computed based on
self-reported engagement in eight puzzle-like activities (cross-
words, Sudoku, Scrabble�, “other word games,” chess, reading,
computer games, “other”). Each ranged from 0 (never) to 2 (regu-
larly). The summed score was used, with scores ranging from 0 to
16. Finally, physical activity was evaluatedwith the General Practice
Physical Activity Questionnaire (National Health Services, Depart-
ment of Health, UK). Subjects rate their current levels of physical
activity in employment and recreation. Scores are summed to
produce a range from 0 to 19, with 19 indicating the highest level of
physical activity.

2.6. Musical training

Subjects provided self-report histories of musical training, spe-
cifically: number of years of musical training, number of in-
struments played, age at start of musical training, etc. The three
items were highly correlated and highly skewed e 52 of our par-
ticipants answered 0 to these questions. Within those who re-
ported a history of musical training, there was a severe positive
skew as well, with only 7 reporting more than 40 years of musical
training. For this reason, we created two groups based on years of
musical training: one group (N¼ 52; Music-) had less than a year of
musical training and the second group (N ¼ 68; Musicþ) had a year
or more of musical training (range: 1e71 years). Most of the
musical training was early in life (during childhood). Seven people
in the Musicþ group played music professionally. The two groups
were matched on all of the variables used in the model, except that
the Musicþ groups had higher scores for Socioeconomic Status,
t(119) ¼ 2.686, p ¼ 0.008, Cohen’s d ¼ 0.495 and Short-Term
Memory, t(119) ¼ 2.952, p ¼ 0.002, Cohen’s d ¼ 0.544 (Table 1).

2.7. Central processing e electrophysiology

2.7.1. Stimulus
A 170-ms speech syllable [da], with six formants, was synthe-

sized in a Klatt-based formant synthesizer at a 20 kHz sampling

Table 1
Overall means (SD’s) are displayed for each observed variable, as well as means
(SD’s) for the Musicþ and Music� groups. Items excluded from the 2-group model
(see 3.3) are presented in grey.

Item Overall mean
(S.D.)

Musicþ Music�

QuickSIN (dB SNR loss) 1.31 (1.21) 1.24 (1.28) 1.37 (1.14)
WIN (dB SNR loss) 4.94 (2.23) 4.85 (2.36) 5.05 (2.11)
HINT (dB SNR) �1.74 (1.38) �1.74 (1.38) �1.75 (1.41)
Auditory attention

(standard score)
103.4 (15.5) 103.02 (12.25) 104.49 (16.66)

Auditory short-term
memory
(standard score)

108.7 (12.7) 111.75 (13.80) 104.78 (10.11)

Auditory working
memory
(standard score)

113.0 (10.0) 114.40 (10.16) 111.27 (9.59)

Audiometry
(PTA, 0.5e4 kHz, dB HL)

20.28 (9.36) 21.56 (10.00) 18.86 (8.35)

DPOAEs (dB SPL) �9.26 (10.95) �11.78 (11.35) �6.55 (9.3)
Physical activity 2.56 (1.30) 2.70 (1.27) 2.38 (1.33)
Intellectual engagement 4.63 (2.58) 4.52 (2.74) 4.78 (2.42)
Socioeconomic

status (SES)
5.48 (1.14) 5.16 (0.14) 5.72 (0.16)

Pitch encoding (mV) 0.22 (0.10) 0.24 (0.11) 0.20 (0.08)
F1 encoding (mV) 0.09 (0.04) 0.09 (0.04) 0.08 (0.04)
QeN correlation

(Pearson’s r)
0.63 (0.18) 0.58 (0.16) 0.66 (0.18)
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rate. The stimulus is fully voiced except for an initial 5 ms stop
burst, after which voicing remains constant with a 100 Hz funda-
mental frequency (F0). The transition from the /d/ to the /a/ occurs
during the first 50 ms of the syllable, and the lower three formants
change linearly: F1 400e720 Hz, F2 1700e1240 Hz, and F3 2580e
2500 Hz. Formants are steady through the remaining 120 ms vowel
portion. The remaining formants are constant throughout the
stimulus: F4 at 3300 Hz, F5 at 3750 Hz, and F6 at 4900 Hz. The
waveform is presented in Fig. 1A, with a spectrogram in Fig. 1B.

The [da] was presented in quiet and noise conditions. In the
quiet condition only the [da] is presented; in the noise condition
masking is added at a þ10 dB SNR. The masker was a six-talker
babble background noise (3 female, English, 4000 ms, ramped;
adapted from Van Engen and Bradlow, 2007), made by mixing 20
semantically-correct sentences. The babble track was looped
continuously over the [da] to prevent phase synchrony between the
speech stimulus and the noise.

In cases of hearing loss (thresholds > 20 dB HL at any frequency
from 0.25 to 6 kHz for either ear), the stimulus was altered to
equate audibility across subjects. This was achieved by selectively
frequency-amplifying the [da] stimulus with the NAL-R algorithm
(Byrne and Dillon, 1986) using custom routines in MATLAB (The
Mathworks Inc., Natick, MA) to create individualized stimuli. Our
group has used this procedure previously and found that it im-
proves the replicability and quality of the response (Anderson et al.,
2013a). The presentation level of the background noise was
adapted on a case-by-case basis to ensure that the hearing impaired
participants, some of whom had stimuli presented at elevated SPLs,
received a þ10 dB SNR in the noise condition. During calibration,
we determined the output of the amplified stimuli and then

selected a babble noise file that had been amplified to achieve
a þ10 dB SNR.

2.7.2. Recording
Subcortical responses were recorded differentially, digitized at

20 kHz, using Neuroscan Acquire 4.3 (Compumedics, Inc., Charlotte,
NC) with electrodes in a vertical montage (Cz active, forehead
ground, earlobe references; all impedances < 5 kU). The unampli-
fied [da] syllable (i.e., stimulus for normal hearing individuals) was
presented binaurally through electrically-shielded insert
earphones (ER-3A; Etymotic Research) at 80 dB SPL with an 83 ms
interstimulus interval in alternating polarities with Neuroscan
Stim2. In cases of NAL-R-amplified stimuli (i.e., stimulus for in-
dividuals with hearing loss), the overall SPL was 80 dB or greater;
however, all other parameters were identical.

The quiet condition always preceded the noise condition. Each
condition lasted w28 min, during which time participants sat in a
recliner and watched a muted, captioned film to facilitate a relaxed,
yet wakeful state. Six-thousand artifact-free sweeps of each
response were collected (no more than 10% of the total sweeps
were rejected due to artifact).

2.7.3. Data processing
Brainstem responses were digitally filtered offline, using a

bandpass filter from 70 to 2000 Hz (Butterworth filter, 12 dB/octave
roll-off, zero phase-shift) and epoched with a e40e213 ms time
window referenced to stimulus onset. Artifact rejection was set at
�35 mV. For analyses of noise degradation and pitch (see below,
Data Analysis), responses to the two polarities were added,
emphasizing the temporal envelope (Campbell et al., 2012; Gorga
et al., 1985), whereas they were subtracted to emphasize stimulus
fine structure for analyses of the first formant (Aiken and Picton,
2008; Anderson et al., in press). Final averages consisted of 6000
sweeps (3000 in each polarity) for each condition. Grand average
waveforms in quiet and noise are presented in Fig. 1C.

2.8. Data analysis

2.8.1. Pitch & Formant
Fast Fourier transforms (FFTs) were run on brainstem responses

to measure pitch (i.e., summed spectral amplitudes corresponding
to the fundamental frequency and second harmonic) and formant
(F1) encoding (i.e., summed spectral amplitudes corresponding to
the fourth through seventh harmonics) to the [da] in quiet. FFTs
were run over the consonantevowel transition (20e60 ms). Prior
to the Fourier transform, zero-padding was applied to increase the
resolution of the spectral display to 1 Hz/point; FFTs were then run
with a Hanning window using a 4 ms ramp time. In each case,
average spectral amplitudes were calculated over 60 Hz bins
around frequencies of interest. Grand average FFTs are presented in
Fig. 2A and B.

2.8.2. Quiet-to-noise (QeN) correlations.
Responses in quiet and noise were cross-correlated to objec-

tively quantify how much an individual is affected by the babble
masking. The two responses are shifted in time (�2 to þ2 ms) until
the maximum correlation coefficient (Pearson productemoment
correlation) is obtained. Maximum correlations are converted to
Fischer z’-scores for statistical purposes (Cohen et al., 2003).

2.9. Statistical analysis

2.9.1. Latent variable modeling
We used exploratory factor analysis and structural equation

modeling to analyze the relative contributions of hearing, cognitive

Fig. 1. The [da] stimulus time-amplitude waveform (A), spectrum (B), and the grand
average cABR waveform (N ¼ 120; C) obtained to the syllable presented in quiet (gray)
and in six-talker babble (black).
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ability, central processing, and life experience to speech-in-noise
perception. Model 1 presents the results of an exploratory factor
analysis of our data, where we estimated latent factors modeled
subsequently (Models 2e4). For these models, we used structural
equation modeling, a latent variable modeling technique that
considers the multiple covariances of observed items to identify,
and elucidate relationships among latent variables (Anderson and
Gerbing, 1988). The structural equation models follow a general
confirmatory factor form which is described as follows in matrix
algebra. Essentially, factor variances and covariances are estimated
through linear regressions. The estimated covariances are then
predicted by an overall factor model (Models 2e4).

For a given subject, s, the measurement model for each item, I, is
estimated as follows:

XIs ¼ mIs þ lIsF1 þ 0F2 þ 0F3 þ 0F4 þ 0F5 þ eI
.0F1 þ lIsFs þ 0Fs þ 0F4 þ 0F5
.
.0F1 þ 0F2 þ 0F3 þ 0F4 þ lIsF5

(1)

where X is a given factor being estimated, l is the unstandardized
loading of regressing a given score Y on X, m is the intercept or
expected score Y when X is zero, F1e5 are the factor variances for
each estimated latent variable, and eI is the error variance for the
estimated latent variable. This procedure is used for the one-factor
model (Model 2).

The two-factor model (Model 3) follows the same general
principles; and may be expressed overall to reflect group differ-
ences as follows:

Sj ¼ mþ Lhj þ εj (2)

Where S is performance on the speech-in-noise tasks, j refers to the
categorical group (Musicþ or Music�), m again to the regressor
intercepts, L to the matrix of factor loadings, h to group differences
in latent factors, and ε to standard errors (i.e., zero-mean residuals)
for each group.

SEM-based procedures have several advantages over other sta-
tistical techniques such as principle component analysis or multi-
ple linear regression. SEM provides the ability to model multiple
predictor and criterion variables, construct latent variables (i.e,

representations of unobserved qualities or conditions), include er-
rors in modeling in a way that prevents bias from measurement
error, and statistically test hypotheses regarding the interactions
among multiple latent variables (Chin, 1998). Given outstanding
questions about the reliance of speech-in-noise perception on pe-
ripheral, central, and cognitive functions, then, it provides an ideal
statistical modeling technique to explore the mechanisms under-
lying speech-in-noise perception.

Reliability estimates were computed on a factor level (Table 2).
Three reliability estimates, uh (omegahierarchical), ut (omegatotal), and
a are provided for each of the latent factors estimated and modeled
(see Sections 3.1 and 3.2). In all cases, higher coefficients refer to
higher estimates of reliability. uh estimates the general factor
saturation of a test scale, and essentially indicates what percentage
of true score variance in a given factor the constituent items
approximate (Zinbarg and Li, 2005). A variant, ut, estimates the
proportion of test variance that is due to all common factors (the
“upper bound” estimate of reliability; Revelle and Zinbarg, 2009).
Finally, we provide estimates of a, a familiar and popular coefficient
of reliability. While a problematic estimate of reliability or consis-
tency of a scale (especially when attempting to identify one un-
derlying factor), we report it nevertheless due to its ubiquity (see
Streiner, 2003 for a detailed discussion).

The ShapiroeWilk test for normality was used to ensure that all
items were multivariate normal; log or root transforms were
applied as appropriate to normalize items that were skewed. The
exploratory factor analysis confirmed our selections of latent vari-
ables, in that they grouped together in the five factors proposed by
our hypothesis. Factor loadings, or the variance of observed vari-
ables predicted by the 5 latent variables, are included in Table 3; see
Model 1).

For each structural model, goodness of fit criteria included the
c2 (chi-square) test and the root mean square error of approxi-
mation (RMSEA). The c2 test evaluates whether the model can be
rejected (p < 0.05) or accepted by comparing the model to an
optimal computer-generated model, thereby providing a formal
test for over-identification of the model (i.e., an appropriately large
number of samples relative to parameters); it is desirable to accept
the null hypothesis of the c2 test. Specifically, the ratio of chi-square
to degrees of freedom in the model should be approximately 1. The
RMSEA is an ad-hocmeasure of goodness of fit that estimates the fit
of the model relative to a saturated model; values �0.05 are
desirable. Data analyses were conducted in R (R Core Development
Team), using the lavaan (Rosseel, 2012), GPArotation (Bernaards
and Jennrich, 2005), and psych (Revelle, 2012) packages, and in
SPSS 20.0 (SPSS, Inc., Chicago). Model selection for exploratory
factor analysis was driven a priori by previous reports and evidence

Table 2
Summary of latent variables, constituent items, and reliability estimates. Factor-level
reliability estimates are provided, namely: uh, ut, and a; see 2.9 for details on their
estimation and interpretation.

Latent variable Item uh ut a

Speech in Noise QuickSIN 0.63 0.78 0.47
WIN
HINT

Cognition Auditory attention 0.62 0.81 0.57
Auditory short-term memory
Auditory working memory

Hearing PTA 0.80 0.80 0.80
DPOAEs

Life experiences Physical activity 0.41 0.60 0.22
Intellectual engagement
SES

Central processing Pitch encoding 0.78 0.86 0.73
F1 encoding
QeN correlation

Fig. 2. Spectra transforms calculated for 20e60 ms of the response to the stimulus
envelope (obtained by adding alternating polarities; top) and temporal fine structure
(obtained by subtracting alternating polarities; bottom) of the stimulus [da] in 60 Hz
bins. The lines indicate the frequencies over which the Pitch encoding and F1 encoding
variables were computed.
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for correlations between specific factors and hearing in noise
(Anderson et al., 2011); this analysis in turn informed subsequent
confirmatory modeling. Only the single best-fit models are re-
ported (Raykov et al., 1991). Refer to Fig. 3 for symbol explanations
in Figs. 4e6.

Linear regressions were also performed, with speech-in-noise
performance entered as the dependent variable and cognition,
central processing, and life experience variables entered as the
dependent variables.We used the “Enter”method ofmultiple linear
regression to specify the order of variable entry. Linear regression
modeling was then repeated with the Musicþ and Music� groups.
Collinearity diagnostics were run with satisfactory variance infla-
tion factor (highest ¼ 2.02) and tolerance (lowest ¼ 0.494) scores,
indicating the absence of strong correlations between two or more
predictors. Table 4 presents inter-item correlations.

3. Results

3.1. Model 1: identification of latent constructs

Exploratory factor analysis was applied to identify latent con-
structs used for subsequent modeling. A generalized least squares
extraction method with varimax rotation and Kaiser normalization
was used (Fabrigar andWegener, 2011). Five factors were suggested
by a scree test and estimated (see Table 3). Rotation converged with
6 iterations. The model was an appropriate fit, c2 ¼ 24.433, df ¼ 40,
p ¼ 0.975; RMSEA ¼ 0.0428. These factors (Hearing, Central Pro-
cessing, Cognition, Life Experiences, and Hearing in Noise) were
used in subsequent structural modeling (Models 2 and 3).

3.2. Models 2 and 3: structural equation model of speech-in-noise
perception

3.2.1. Model 2
Having identified latent variables, we examined their relative

contributions to speech-in-noise performance. We used structural
equation modeling which allowed us to examine the interactions
between constituent mechanisms of hearing in noise. The model
converged normally after 63 iterations and was an appropriate fit,
c2¼ 72.59, df¼ 67, p¼ 0.299; RMSEA¼ 0.035, accounting for 56.7%
of the variance in speech-in-noise performance. In the model, the
direct contributions of Central Processing and Cognition to Speech
in Noise were significant; the contributions of Life Experiences and
Hearing were not. Both Life Experiences and Cognition contributed
to Speech in Noise through top-down influences on central pro-
cessing (Fig. 4).

3.2.2. Model 3
We validated this model by performing a similar analysis on a

random sample of 60% of the participants (N ¼ 72). Because of the
reduced number of participants, we eliminated the variables that
were not strong predictors in the original model or that incurred
large error variance in the reduced subset (QuickSIN, Auditory
Attention, Pitch Encoding, PTA, Physical Activity, and Intellectual
Engagement). The model converged normally after 31 iterations
and was an appropriate fit, c2 ¼ 13.265, df ¼ 13, p ¼ 0.428;
RMSEA ¼ 0.019, accounting for 36.4% of the variance in speech-in-
noise performance. In this model, we again find that the Hearing
variable does not significantly contribute to the model; however,
Life Experiences is now a significant contributor, along with
Cognition and Central Processing (Fig. 5). Life Experiences and
Cognition continue to contribute indirectly to speech-in-noise
performance via modulation of Central Processing.

Post-hoc multiple linear regression was performed to confirm
and replicate these findings, reducing the number of variables to six
(Auditory Working and Short-term Memory, F1 Encoding, Q-N
correlation, Physical Activity, and SES)e an appropriate number for
a regression model with our sample size (Green, 1991). The HINT
score was used as the dependent variable based on the strength of
this variable in the SEM analysis. The independent variables were
chosen based on the strength of their correlations with HINT and of
their contributions to the SEM. Our model (F1 encoding, Q-N Cor-
relation, Auditory Working Memory, Auditory Short-term Memory,
SES, and Physical Activity) is a good fit for the data (R2 ¼ 0.253,
F(6,119) ¼ 6.380; p < 0.001). Only Auditory Working Memory and
Q-N correlation, however, were significant contributors to the

Table 3
Item loadings for a five-factor model. A generalized least squared exploratory factor analysis with Kaiser normalization was estimated. Factor loadings are reported with
corresponding latent factors estimated in subsequent structural models. Items assigned to each factor are presented in boldface.

Speech in noise Cognition Hearing Life experiences Central processing

QuickSIN �0.007 �0.126 �0.062 0.074 0.138
WIN 0.819 �0.095 0.042 �0.003 0.197
HINT 0.668 �0.288 0.062 �0.042 0.135
Auditory attention 0.138 �0.217 0.209 0.073 �0.042
Auditory short-term memory �0.083 0.664 0.053 �0.095 �0.026
Auditory working memory �0.235 0.815 �0.103 0.119 0.010
Audiometry 0.094 �0.053 0.931 0.137 �0.101
DPOAEs 0.024 �0.027 �0.699 0.068 0.021
Physical activity �0.130 0.078 0.032 0.162 0.110
Intellectual engagement �0.011 �0.022 0.056 0.997 0.032
SES �0.245 0.058 0.100 �0.099 0.276
Pitch encoding 0.077 �0.068 �0.129 �0.020 0.822
F1 encoding 0.156 �0.126 0.004 0.146 0.496
QeN correlation 0.165 0.095 �0.028 0.029 0.772

Fig. 3. The symbols and lines in Figs. 4e6 are defined.
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model. Table 5 provides standardized coefficients (b) and levels of
significance for the predictors in the post-hoc regression.

3.3. Model 4: two-group model based on history of musical
experience

Because the music factor created two much smaller groups, the
number of observed and latent variables needed to be reduced to
assure that the model was not over-parameterized. Based on their
minimal contributions as established in Model 2, Intellectual
Engagement and Hearing were omitted a posteriori in Model 4. The
model converged normally after 84 iterations and was an appro-
priate fit, c2 ¼ 82.59, df ¼ 76, p ¼ 0.283; RMSEA ¼ 0.047. The c2

values for each group were 42.68 (Musicþ) and 39.91 (Music-). Our
modeling indicates that the groups use different mechanisms for
hearing in noise: in the Musicþ group, Cognition was weighted
more heavily (variance: Musicþ ¼ 0.54, Music� ¼ 0.06), and in the
Music� group the influence of Life Experience was stronger (vari-
ance: Musicþ ¼ 0.11, Music� ¼ 0.71. Central Processing is an
important factor for both groups (Fig. 6).

To cross-validate the different weightings of Cognition and Life
Experiences in the Music� and Musicþ groups, we calculated 4
new sub-models andmade the following comparisons: 1) a Musicþ
sub-model with Cognition but no Life Experiences factors vs. a
Musicþ sub-model with Life Experiences but no Cognition factors,
and 2) a Music- sub-model with Life Experiences but no Cognition
factors vs. a Music- sub-model with Cognition but no Life Experi-
ences factors. All other variables were the same as those used in the
original 2-group model. By comparing c2 differences between sub-

models, we found that the Musicþ sub-model with Cognition fac-
tors was a better fit than the one with Life Experiences factors
(c2 ¼ 15.276, df ¼ 7, p ¼ 0.033) and accounted for more variance in
SIN perception (43% vs. 11%). In the Music- model, Life Experiences
factors trended towards a better fit than the one with Cognition
factors (c2¼ 12.875, df¼ 7, p¼ 0.075) accounting for 79% vs. 35%. In
addition, while Life Experiences did not significantly contribute to
the Musicþ sub-model with Life Experiences only, we found that
Cognition factors were a significant contributor to the Music- sub-
model with Cognition only. While our original model did not reveal
the importance of Cognition factors for the Music- group, by cross-
validating the model and removing Life Experiences, we see that
Cognitive factors do in fact play a role in speech-in-noise perfor-
mance in both groups (Table 6).

We used multiple linear regression modeling to confirm these
findings and to control for the effects of SES on the results. We
entered “SES” on the first step and Auditory Working Memory, Q-N
Correlation, and Physical Activity on the second step. On its own,
SES did not significantly predict variance for either model (Music-:
F1,55 ¼ 2.716, p ¼ 0.105; Musicþ: F1,63 ¼ 0.116, p ¼ 0.735). On the
second step, both models are good fits for the data (Music-:
F1,55 ¼ 3.973, p ¼ 0.007; Musicþ: F1,63 ¼ 5.216, p ¼ 0.001) with R2

values of 0.238 (Music�) and 0.261 (Musicþ). Table 7 provides
standardized coefficients (b) and levels of significance for the var-
iables. In both of these models, only Auditory Working Memory
significantly contributes to the variance on its own. The results of
this model differed with those of our two-group SEM, suggesting
that the SES factor may have been driving the results of the original
two-group SEM.

Fig. 4. In our structural equation model of speech in noise, cognition and central processing predict the greatest proportion of variance in the model, with cognition and life
experiences having additional indirect effects on Speech-in-Noise performance through modulation of central processing. The larger R2 values indicate stronger contributions from
observed to latent variables and from latent variables to central processing or to speech in noise. The model accounted for 56.7% of the variance in speech-in-noise performance.
Refer to Fig. 3 for definitions of symbols and lines.
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4. Discussion

Our models reveal that cognition and central processing predict
a significant proportion of the variance in speech-in-noise perfor-
mance, with life experiences and cognition providing indirect in-
fluence by mediating the brainstem’s contributions through top-
down modulation. In other words, cognitive abilities such as
memory and attention, along with central (i.e., brainstem) pro-
cessing of speech, help to determine how well an older individual
understands speech in noise. Life experiences and cognition can
also strengthen brainstem processing of sound, such that these
factors influence speech-in-noise perception indirectly. For the
group that reported a history of musical training at any time in their
lives (one year or more), cognition appears to play a more impor-
tant role for understanding speech in noise, while life experiences
play a bigger role in the group with no musical training. By con-
trolling for SES, however, the role of cognition for the group with no
musical training is also revealed. Central processing, as measured
by the brainstem response to speech, predicts a significant amount
of variance in both groups.

4.1. Auditory-cognitive system

The strong role of cognitive function in our model supports the
view that the auditory system is dynamic and highly integrated
with cognitive function (Arlinger et al., 2009). Cognition may be
especially important for older adults as they draw on compensatory
mechanisms to fill in gaps in an auditory stream caused by
decreased audibility, slower sensory processing, and reduced
spectrotemporal precision (Wong et al., 2009; Pichora-Fuller and

Souza, 2003; Wong et al., 2010). The strong role of cognitive per-
formance in our model is consistent with the Decline Compensa-
tion Hypothesis, which states that decreases in sensory processing
can be compensated for, at least in part, by drawing on more gen-
eral cognitive functions (Cabeza and Dennis, 2007). Interestingly,
our models also suggest that this compensation can be modulated
by previous life experience (i.e., musical training).

In our model, auditory working memory has the strongest
cognitive influence, relative to auditory short-term memory and
auditory attention, confirming a relationship between auditory
working memory and speech-in-noise perception in older adults
(McCoy et al., 2005; Pichora-Fuller, 2003; Parbery-Clark et al.,
2011a). In a meta-analysis, Akeroyd (2008) found a fairly consis-
tent relationship between speech recognition in noise and auditory
working memory, while more general measures of IQ were not
effective for predicting speech-in-noise ability. Others have found
that speed of processing and attention are also predictive of
speech-in-noise performance (Schvartz et al., 2008).

In addition to a direct effect, cognition may also have an indirect
effect on speech-in-noise processing through modulation of
brainstem processing. The Reverse Hierarchy Theory posits that
cortical areas can access low-level information (i.e., brainstem
processing) through top-down modulation to increase signal
clarity, such as in the presence of background noise (Nahum et al.,
2008). Shamma, Fritz and colleagues have demonstrated a neural
basis for top-down modulation of sensory processing; they have
established a functional connection between the frontal and audi-
tory cortices in an animal model, such that cognitive function (i.e.,
attention) modulates sensory encoding in the auditory cortex (Fritz
et al., 2010). A tentative connection between the frontal cortex and

Fig. 5. Model 2 is cross-validated with a random sample of 60% of the participants (N ¼ 72). Cognition and central processing continue to contribute significantly to the variance; life
experiences contribute to a greater extent than originally estimated in Model 2. This model accounted for 36.4% of the variance in speech in noise. Refer to Fig. 3 for definitions of
symbols and lines.
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the brainstem has also been suggested by fMRI studies; for difficult
tasks, the brainstem may signal the frontal cortex to increase
attentional resources (Raizada and Poldrack, 2007).

4.2. Life experience

Life experience, comprising SES, physical activity, and intellec-
tual engagement variables, contributed to speech-in-noise
perception in our models, albeit less so than central processing or
cognition. SES was the strongest of the items, and it likely
accounted for variance that might otherwise have been observed in
the physical activity or intellectual engagement variables. We used
maternal and individual educational levels to determine SES; better
education translates into better linguistic abilities that in turn aid
the comprehension of spoken language (Wingfield and Tun, 2007).
Benefits of higher SES for neural function have been established in
children (Luo and Waite, 2005), and we conjecture that these
benefits are sustained through the lifetime. Currently, adults
approaching retirement age are seeking methods to mitigate the
effects of aging. Given that cognitive engagement can reduce the
manifestations of dementia through multiple pathways (Landau
et al., 2012; Valenzuela et al., 2011), a healthy lifestyle comprising
both physical and intellectual activities may reduce other expected
effects of aging, such as impaired understanding of speech in noise.

4.3. Musical training and socioeconomic status

Although the two-group SEM suggested different weighting of
Cognition vs. Life Experience factors in individuals with and

without musical experience, results of multiple linear regressions
that control for SES indicate that Cognition is the most important
variable in both groups. Therefore, SES appears to be a factor un-
derlying the observed musician-nonmusician differences in pref-
erential weighting of factors when listening to speech in noise.
These results are not surprising, in that we would expect that
families with greater resources (relatively higher SES) may be more
likely to enroll their children in musical training. Given that SES in
the early years of life predicts cognitive function in later years, from
adolescence to middle age (Osler et al., in press), this early exposure
to an enriched environment may facilitate reliance on cognitive
resources seen in high SES groups.

Our results do not detract from the robust and compelling evi-
dence that a life of musical training can change perceptual (Zendel
and Alain, 2012; Parbery-Clark et al., 2011a), cognitive (Chan et al.,
1998; Cohen et al., 2011; Ho et al., 2003; Jakobson et al., 2008;
Hanna-Pladdy and Gajewski, 2012; Tierney et al., 2008), and
subcortical neural processing (Bidelman and Krishnan, 2010;
Parbery-Clark et al., 2012; Wong et al., 2007); rather, they support
the importance of considering SES in conjunction with musical
training (Schellenberg and Peretz, 2008; Schellenberg, 2005).
Musical training requires active listening and engagement with
sound and a connection of sound to meaning; for example, the
dynamics of music (i.e., tempo, volume, etc.) can convey mood or
imagery in such away as tomotivate a listener to carefully attend to
an auditory stream (Kraus and Chandrasekaran, 2010; Patel, 2011).
The use of music as a medium for enhanced educational and social
outcomes has been successfully used in programs targeting chil-
dren from lower SES backgrounds, such as El Sistema in Venezuela

Fig. 6. Compensatory mechanisms for understanding speech in noise differ depending on life experiences: the Musicþ (gray) group relies on cognition while the Music- (black)
group relies on life experience factors. Central processing plays an important role in both of the groups. Refer to Fig. 3 for definitions of symbols and lines.
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(Wakin, 2012) and the Harmony Project in Los Angeles (Gould,
2011), with these children achieving higher academic success
than non-participating children (Majno, 2012). Therefore, we pro-
pose that although SES is a driving factor in the use of cognitive
resources, musical training may be used to overcome the deficits
that might result from an upbringing in a low SES background.

4.4. Hearing

Interestingly, hearing, as assessed by pure-tone audiometry and
DPOAEs, did not make a significant contribution to the variance in
speech-in-noise perception. These results are consistent with re-
ports that the audiogram is not a good predictor of speech-in-noise
performance (Killion and Niquette, 2000; Souza et al., 2007;
Anderson et al., 2013a). It should be noted, however, that we
excluded participants with more than a moderate hearing loss, so
that average hearing levels were in the normal to mild hearing loss
range. Had we included individuals with severe hearing loss, we
expect that hearing would have accounted for more variance in
speech-in-noise performance, as it did in the Humes et al. (1994)
study. The DPOAE measurement system we used (Scout 3.45),
while providing a measure of the health of outer hair cells, cannot
be used independently to predict hearing sensitivity or acuity
(Kemp, 2002); therefore, it is not surprising that this measurement
contributed minimally to the model. The suppression of DPOAEs
through contralateral masking and the activation of the auditory
efferent system may be related to speech-in-noise performance,
but reports are conflicting. Some researchers have reported this
relationship (de Boer et al., 2012; Mukari and Mamat, 2008), while
at least one study found no relationship between contralateral
suppression and speech-in-noise performance (Wagner et al.,
2008). Future studies of sensory-cognitive relationships should
consider a measure of efferent auditory system function, such as
contralateral suppression of DPOAEs (Mazelová et al., 2003).
Nevertheless, in our study two converging measures of peripheral
auditory function failed to account for variance in speech-in-noise
perception, further illustrating the critical roles of other factors.

4.5. Additional factors not included in the model

Although a sample size of 120 subjects is relatively large for
electrophysiological studies, it is modest in the context of structural
equationmodeling. We are not making any claim that themeasures
we used are the sole factors involved in speech-in-noise percep-
tion; indeed, there are additional important factors that merit
future investigation. It was important, however, that we exercise
parsimony in selecting factors due to the constraints of our statis-
tical modeling techniques.

Table 5
Summary of hierarchical regression analysis for variables predicting speech-in-noise
perception (HINT) (N ¼ 120).

Variable B SE B b p

Auditory working memory �0.053 0.015 �0.357 0.001
Auditory attention 0.159 0.106 0.152 0.138
F1 encoding 1.231 0.801 0.161 0.128
QeN correlation 0.245 0.566 0.053 0.043
Physical activity �0.040 0.110 �0.035 0.716
SES �0.135 0.135 �0.099 0.321

Unstandardized (B and SE B) and standardized (b) coefficients in a model of con-
tributions from observed variables contributing to the latent variables of cognition,
life experiences, and central processing. The overall model of speech-in-noise
perception (based on the HINT score) is an appropriate fit, with auditory working
memory and QeN correlation providing significant contributions to the model.
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For the cognitive factor, we included two measures of memory
and one of attention, but not speed of processing. We acknowledge
that speed of processing is an important factor in speech percep-
tion, especially in older adults who are affected by neural slowing
and decreased temporal precision (Craig, 1992; Wingfield et al.,
1999; Tremblay et al., 2002; Parthasarathy and Bartlett, 2011;
Walton et al., 1998; Finlayson, 2002; Recanzone et al., 2011;
Anderson et al., 2012). Future work will investigate what contri-
butions it makes in an interactive speech-in-noise system.

We used the cABR as an objective measure of central auditory
processing, but we could also have included additional electro-
physiological measures, such as cortical evoked auditory potentials.
Components of the cortical response waveform are related to
speech-in-noise perception in children (Anderson et al., 2010),
young adults (Parbery-Clark et al., 2011b), and older adults
(Getzmann and Falkenstein, 2011). Specifically, there is evidence
that earlier components of the cortical evoked response (P1 and
N2) reflect encoding acoustic cues such as frequency and timing
whereas the later components (P2 and N2) reflect the synthesis of
these features into a sensory representation (i.e., an auditory ob-
ject) (Shtyrov et al., 1998; Ceponiene et al., 2005; Toscano et al.,

2010). However, early cortical processing is closely related to
brainstem processing (Abrams et al., 2006); therefore, we would
predict that the addition of cortical measures would not contribute
substantially more than brainstem processing. Nevertheless, future
models of speech-in-noise perception should consider measures of
cortical auditory processing, especially cortical components
reflecting cognitive functions such as attention and working
memory (Alho et al., 2012).

4.6. Clinical implications

The finding that central processing and cognition, but not
hearing, were strong factors in our model speaks to the need to
address these issues when developing treatment plans for patients
complaining of hearing-in-noise difficulties, including individuals
with mild-to-moderate hearing loss. Developers of hearing aid al-
gorithms have begun to consider cognitive function in hearing aid
processing and have recommended slow-acting compression for
individuals with low cognitive abilities (Lunner, 2003; Rudner et al.,
2011; Cox and Xu, 2010; Gatehouse et al., 2003); in the future,
engineers may consider how impaired central processing responds
to different amplification algorithms. These factors can also be
considered when designing training programs. There is evidence
that central processing can be improved with short-term (Song
et al., 2012; Russo et al., 2010; Carcagno and Plack, 2011;
Hornickel et al., 2012; Anderson et al., 2013b) and long-term
training (e.g. music or language, Parbery-Clark et al., 2009;
Krizman et al., 2012; Bidelman and Krishnan, 2010; Krishnan et al.,
2005; Parbery-Clark et al., 2012), and that training can improve
cognition in older adults (Smith et al., 2009; Berry et al., 2010;
Gazzaley et al., 2005). Our results suggest that perceptual training
that incorporates high cognitive demands may improve speech-in-
noise perception directly by training important factors such as
memory and attention, and indirectly by strengthening cortical-
subcortical sound-to-meaning relationships.
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Table 6
Values from the cross-validation ofMusicþ andMusic�models that include either life experiences or cognition variables in the prediction of speech-in-noise performance. The
variables in gray are latent variables rather than observed variables. The MusicþCog and Music�Life models (values in bold) are better predictors of speech-in-noise per-
formance and are better models of the data based on c2 testing.

MusicþCog MusicþLife Music-Cog Music-Life

R2 SE variance R2 SE variance R2 SE variance R2 SE variance

WIN 0.389 0.154 0.653 0.373 0.964 0.178 0.868 0.132
HINT 0.873 0.206 0.486 0.290 0.615 0.142 0.656 0.124
QuickSIN 0.005 0.203 0.980 0.192 0.051 0.213 0.028 0.218
Auditory working memory 0.952 0.293 0.538 0.169
Short-term memory 0.323 0.170 0.611 0.173
Auditory attention 0.023 0.200 0.389 0.170
Physical activity 0.914 0.194 0.180 0.207
SES 0.773 0.274 0.377 0.244
Pitch 0.741 0.145 0.311 0.135 0.811 0.146 0.720 0.155
F1 formant 0.241 0.164 0.693 0.150 0.258 0.175 0.308 0.171
QeN correlation 0.732 0.145 0.359 0132 0.653 0.138 0.616 0.149
Speech in noise 0.443 0.109 0.353 0.793
Central processing 0.009 0.721 0.010 0.008
c2 (degrees of freedom) 26.64 (24) 11.36 (17) 22.36 (24) 9.49 (17)

Table 7
Summary of “Enter”Hierarchical regression analysis for variables predicting speech-
in-noise perception in music� (N ¼ 52) and Musicþ (N ¼ 68) groups.

Musicþ
Variable DR2 b p
Model 1
SES 0.001 0.035 0.794

DR2 b p
Model 2 0.316 <0.001
Auditory working memory 0.521 <0.001
QeN correlation 0.184 0.131
Physical activity 0.170 0.150

Music�
Variable DR2 b p
Model 1
SES 0.071 0.266 0.074

DR2 b p
Model 2 0.161 0.048
Auditory working memory 0.311 0.034
QeN correlation 0.147 0.293
Physical activity 0.168 0.258

Standardized (b) coefficients in models comparing separate contributions (DR2)
from the SES variable on the first step and auditory working memory, QeN corre-
lation, and physical activity on the second step. For both the Musicþ and Music�
groups, after controlling for SES, the most important factor was auditory working
memory.
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