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Abstract
An inability to process auditory information, especially
speech, characterizes many children with learning and'
attention problems. Our working hypothesis is that these
speech-sound perception problems arise, at least in
some cases, from faulty representation ofthe speech sig-
nal in central auditory centers. Preconscious neurophysi-
ologic representation of sound structure by central audi-
tory pathway neurons can be reflected by subcortical
and cortical aggregate neural responses. These neuro-
physiologic responses can be modified by perceptual
learning. Our research has shown that some children
with learning problems demonstrate abnormal percep-
tion and neural representation of certain speech sounds.
Differences between normal and learning-impaired
groups can be attributable to aspects of neural synchro-
ny that are reflected in aggregate neural responses. Defi-
ciencies in neural synchrony in these children are appar-
ent in subcortical (as well as cortical) representations of
speech-sound structure, and these timing deficits are
related to performance on speech-sound perception and
learning measures. Moreover, impaired perception and
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Introduction

Understanding speech during everyday listening
places many demands on the auditory system. Among
these demands are the accurate representation of rapidly
changing spectral information comprising the speech sig-
nal, and the separation of speech from background noise.
Our research is aimed at understanding the basic biologic
processes underlying speech-sound perception in quiet
and noise. Specifically, we are interested in how neural
activity gives rise to these processes in normal school-age
children and in children with auditory learning problems.
In addition, we are investigating the neurobiological pro-
cesses involved in the perceptual learning of speech
sounds in order to impact the design of training regimens
that may assist those individuals who have difficulty per-
ceiving speech sounds. Our group has used behavioral and
neurophysiologic measures to investigate biologic pro-
cesses involved in speech-sound perception and to delin-
eate the nature and origin of auditory deficits affecting
communication [Bradlow et aI., 1999; Carrell et aI., 1999;
Cunningham et aI., 2000b, 2001; Koch et aI., 1999; King
et aI., 1999; Kraus et aI., 1994a, b, 1996, 1998, 1999,
2000; McGee et aI., 1996].
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Evoked potentials can reflect level-specific neural syn-
chrony to speech-sound elements. The auditory brainstem
response (ABR) depends on a high degree of synchronized
firing between neurons. If there is excessive neural jitter,
which might occur in an impaired auditory system, the
separation of individual neural responses by even a frac-
tion of a millisecond could cause responses to cancel each
other out. The frequency following response (FFR) also
depends on a high degree of neural synchrony. It reflects
brainstem-generated, phase-locked responses to the speech
stimulus' fundamental frequency and, to a lesser extent, its
harmonics. Cortical responses reflect stimulus-locked syn-
chronous firing across neural ensembles. Pl/Nl/N2 are
elicited by stimuli presented in a simple repetitive se-
quence, whereas the mismatch negativity (MMN) is elicit-
ed by an acoustic change in a repetitive sequence. Pl/Nl/
N2 and MMN each arise from different anatomic sources

[Kraus et aI., 1994a; NiiiWinen and Picton, 1987; Sams et
aI., 1991; Scherg et aI., 1989] and represent different
aspects of auditory function. That is, Pl/Nl/N2 and
MMN (largely) reflect primary and non primary auditory
pathway activity, respectively, and differ in their time
course of maturation, patterns of hemispheric symmetry
and responses to sound in background noise [Bellis et aI.,
2000; Cunningham et aI., 2000b; Kraus et aI., 1999; Pon-
ton et aI., 2000; Sharma et aI., 1997; Martin et aI., 1997].
Fine-grained speech-sound discrimination is associated
with MMN [Kraus et aI., 1993; Sams et aI., 1985], whereas
P l/N l/N2 are associated with other, more global aspects
of auditory function such as the perception of syllables,
words and sentences, and auditory short-term memory
[Conley et aI., 1999; Cunningham et aI., 2000b]. Taken
together, these aggregate neural responses can be used to
acquire knowledge about speech-sound perception.

Speech Perception and Learning Problems

Almost 10% of children exhibit learning and reading
disabilities [Torgeson, 1991]. Recent research has suggest-
ed that a subset of these children have difficulty with per-
ception of certain fundamental acoustic differences with-
in speech sounds [Brandt and Rosen, 1980; De Weirdt,
1988; Elliot et aI., 1989; Kraus et aI., 1996; Leonard et aI.,
1992; Mody et aI., 1997; Stark and Heinz, 1996a; Suss-
man, 1993; Tallal and Piercy, 1974; Tallal and Stark,
1981; Werker and Tess, 1987]. Those perceptual deficits
are associated with poor phonologic processing and poor
reading skills [Fletcher et aI., 1994; Godfrey et aI., 1981;
McBride-Chang, 1996; Reed, 1989]. Our hypothesis has
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been that, for some children, the difficulty in perceiving
fundamental acoustic parameters stems from abnormali-
ties in the neural representation of speech that occurs
after peripheral sensory encoding but prior to conscious
perception. Consistent with this view, we have demon-
strated a fundamental, biologic basis for perceptual defi-
cits in some children with learning problems at cortical
and brainstem levels of the auditory pathway [Bradlow et
aI., 1999; Cunningham et aI., 2000b, 2001; Kraus et aI.,
1996]. We have also shown that preattentive neural
responses to sound can be improved with acoustically
enhanced signals [Bradlow et aI., 2000, 2001; Cunning-
ham et aI., 2001] and modified by short-term perceptual
training [Hayes et aI., 2001; Kraus et aI., 1995; Tremblay
et aI., 1997, 1998].

Many individuals with learning problems (LP) demon-
strate particular communication difficulties in noise [Bel-
lis, 1996; Breedin et aI., 1989; Chermak and Musiek,
1997; Jerger et aI., 1987; Katz, 1992; Welsh et aI., 1996],
when stimuli are rapidly presented [Cestnick and Jerger,
2000; Farmer and Klein, 1995; Hari and Kiesila, 1996;
Livingstone et aI., 1991; Nagarajan et aI., 1999; Tallal and
Piercy, 1974], or when fine-grained discrimination is
required [Bradlow et aI., 1999; Elliot et aI., 1989; Kraus et
aI., 1996; Wright et aI., 1997]. Despite general acknowl-
edgment that these factors excessively tax perception in
this population, recent studies are just beginning to reveal
neurobiological differences between normal and LP chil-
dren when signals are presented in these challenging lis-
tening situations [Bradlow et aI., 1999; Cestnick and Jerg-
er, 2000; Cunningham et aI., 2001; Kraus et aI., 1996;
Nagarajan et aI., 1999; Wible et aI., 2001].

Project on Listening, Learning and the Brain

In an ongoing project, we are investigating the corre-
spondence between electrophysiologic responses and be-
havioral abilities in a large population of both normal and
impaired children. Specifically examined is the relation-
ship among psychophysical speech discrimination (listen-
ing), standardized measures of learning ability and aca-
demic achievement (learning), and neurophysiology (the
brain).

Psychophysical Perception and Neurophysiologic
Representation of Speech-Sound Differences
We have hypothesized that there is a biological basis

for perceptual deficits in some of the LP children, and
that disruption occurs in the representation of sound at a
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Fig. 1. Left: In LP children, perception was selectively worse for Ida-gal than for Iba-wa/. Middle/right: MMN was
evident for 'good' and absent for 'poor' Ida-gal perceivers. Boxes below indicate the latency range over which a
significant MMN occurs [from Kraus et a!., Science, 1996].

preconscious, preattentive levei. Our results support these
hypotheses and provide evidence of neural asynchrony in
sound representation at both brainstem and cortical levels
[Bradlow et ai., 1999; Cunningham et ai., 2000b, 2001;
King et ai., 2001; Kraus et ai., 1996].

On a behavioral task assessing fine-grained perception
along Ida-gal and Iba-wal continua, LP subjects per-
formed significantly worse than normal subjects [Kraus et
ai., 1996]. Perception was selectively worse for Ida-gal
(change in third-formant onset frequency) than for Iba-
wal (change in formant transition duration). This pattern
indicates that LP children are better able to discriminate
synthetic speech stimuli that differ in the temporal do-
main than stimuli that differ spectrally at stimulus onset.
The discrepancy between Ida-gal and Iba-wal in LP sub-
jects is important in that the better performance on Iba-
wal indicates that attention-motivation factors did not

preclude good performance on the task. Overall, percep-
tual deficits cut across diagnostic categories, occurring in
LP children with diagnoses of learning disability, atten-
tion deficit hyperactivity disorder, combined learningl
attention disorder, and dyslexia. This supports the notion
that there is a common perceptual deficit in a subset of
children with various clinical diagnoses.

An association between perception and neurophysio-
logic mechanisms has been established as illustrated in
figure 1. Good perception of Ida-gal is associated with
robust cortical responses to stimulus change (MMN),
whereas poor discrimination is associated with dimin-
ished responses [Bradlow et ai., 1999; Kraus et ai., 1996].
Children in both groups had MMNs in response to the
Iba-wal stimulus contrast, consistent with their good dis-
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crimination of those stimuli. The psychophysical and
electrophysiologic data together provide evidence for a
preattentive, biological basis for learning problems in
some children.

Brainstem and Cortical Asynchrony to Speech Sounds
Our data on normal (NL) and LP children indicate that

brainstem responses to speech syllables differ for NL com-
pared to LP children [King et ai., 2001]. In addition, we
have investigated brainstem and cortical encoding of
speech sounds presented in background noise [Cunning-
ham et ai., 2001]. Subjects were children with LP and age-
matched normal controls. LP subjects performed signifi-
cantly worse than normal children on measures of audito-
ry processing, reading, spelling, and fine-grained discrimi-
nation along a Ida-gal continuum. Speech perception in
noise (discrimination along an lada-agal continuum) was
significantly worse in the LP children.

Results are summarized in figure 2. ABR, FFR and PI I
Nl/N2 were elicited by Ida/, presented in quiet and in
background noise [Cunningham et ai., 2001]. In noise, LP
children exhibited significantly prolonged wave V laten-
cies. A fast Fourier transform of the FFR revealed

reduced energy in certain frequency bands (250-750 Hz)
in the LP children compared to normals. Correlations
between the stimulus and response waveforms in noise
were significantly lower for the LP group. Overall, the
data indicate that synchrony of auditory brainstem neu-
rons differs between NL and LP children. Consequently
certain learning deficits may originate from a disorder in
auditory neural timing already seen at the brainstem lev-
ei. In addition, cortical responses revealed that LP chil-
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Fig. 2. Left: Magnitude of the spectral content of FFR shown by FFT in NL and LP children. Groups differed
significantly in noise (between 450 and 750 Hz), not in quiet. Middle: Cortical potentials did not differ between NL
and LP children in quiet, but were significantly smaller in LP subjects in noise. Right: Mean JNDs for NL and LP
children along lada-agalcontinua. LP children had poorer speech discrimination in noise and regained normal perfor-
mance with cue-enhanced 'clear' stimuli [from Cunningham et aI., Clin Neurophysiol, 2001].

dren showed significantly reduced P2-N2 amplitude to
stimuli in noise. This demonstration of deficient neural

representation of speech-in-noise at brainstem and corti-
callevels in LP children indicates that deficiencies in neu-

ral representation exist at multiple levels of the auditory
pathway. In another study [Bradlow et aI., 2000], LP chil-
dren performed significantly worse than NL children in
the perception of sentences in noise. Finally, preliminary
data describe the effects, both singular and combined, of
repeated stimulus repetition and background noise on
cortical potentials [Wible et aI., 2001]. The neural repre-
sentation of repeated speech stimuli has been found to be
diminished in LP children and was related to behavioral

measures of auditory processing.

Cue Enhancement

The perceptual benefits of 'clear' or acoustically en-
hanced speech have been established [Jerger, 1999; Pay-
ton et aI., 1994; Picheny et aI., 1985; Smith and Levitt,
1999; Uchanski et aI., 1996], and some features have been
incorporated into commercially available auditory train-
ing programs designed for LP children. The effects of
'clear' speech in noise were investigated in LP and NL
children [Cunningham et aI., 2001]. The acoustic cues
that are enhanced during 'clear' speech include an in-
creased amplitude of consonant burst and a lengthened
stop-gap duration [Picheny et aI., 1986].

ABR, FFR and P l/N l/N2 potentials were obtained to
enhanced Idal stimuli (with amplification of the release
burst intensity) presented in background noise [Cun-
ningham et aI., 2001]. Cue enhancement elicited normal
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cortical responses in those LP children with deficient
responses to unenhanced signals. This implies that the
neural representation of acoustic events can be improved
by specific cue enhancement.

Behaviorally, fine-grained discrimination in noise
(along an lada-agal continuum) was significantly worse in
LP than normal children [Cunningham etal., 2001]. Yet,
when 'clear' speech characteristics are added to the stimu-
li, perception improved. When each of the 'clear' speech
enhancements was studied in isolation, increased release
burst intensity was found to be a more important acoustic
cue manipulation than lengthened stop gap duration. In
addition, perception of sentences in noise in LP children
improved dramatically when the same sentences are pro-
duced with 'clear' speech [Bradlow et aI., 2000, 2001],
expanding our findings to more real-world listening situa-
tions.

Plasticity and Speech-Sound Perceptual
Learning

Speech perception abilities in humans are modified
both by long-term experience with one's native language
[Aslin et aI., 1981; Cheour et aI., 1998; Dehaene-Lam-
bertz and Baillet, 1998; Jusczyk et aI., 1984; Kuhl et aI.,
1992; Mehler et aI., 1978; N~Uitiinenet aI., 1997; Werker
et aI., 1981], and by short-term directed auditory training
in a laboratory or clinical environment [Bradlow and
Pisoni, 1999; Pisoni et aI., 1982], and speech perception
can be modified by auditory training in language-im-
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paired children [Ball and Blanchman, 1991: Bradley and
Bryant, 1983; Merzenich et a!., 1996; Schankweiler et a!.,
1995; Tallal et a!., 1996]. Little is known about neural
plasticity associated with perceptual learning in humans,
although animal experiments have demonstrated that
sensory cortex becomes restructured with training [Jen-
kins et a!., 1990; Kraus et a!., 1982; Merzenich and Jen-
kins, 1993; Recanzone et a!., 1992, 1993]. Our research
has demonstrated physiologic changes associated with
auditory perceptual learning in humans. These changes
are preattentive and can precede behavioral learning
[Kraus et a!., 1995; Tremblay et aI., 1997. 1998, 200 I].

Speech-Sound Training in Children with LP
Interest in perceptual training programs for people

with LP has persisted throughout the years in the fields of
education, psychology, speech and hearing. and learning
disabilities [Orton, 1937]. More recently, there has been
much interest in interactive computer-based auditory
training programs [Diehl, 1999; Morrison. 1998; Tallal et
aI., 1998]. However, the efficacy of these programs is not
uniform across children, and it is unclear which kind of
training, for which profile of deficits, results in perceptual
improvements. Studying children who undergo this train-
ing provides important insights into the neurophysiologic
and perceptual changes associated with perceptual learn-
ing. It is important to determine which children might
benefit from training, and how training may alter the neu-
ral representation of sound at various levels of the audito-
ry pathway.

Weare investigating the effects of commercial comput-
er-based auditory training programs on behavioral and
neurophysiologic measures in children with LP [Hayes et
aI., 2001; Zhang et aI., 2000]. Subjects are tested before
and after participation in these programs on learning, per-
ceptual, and neurophysiologic measures. Preliminary re-
sults indicate improvement on measures of perception
and learning, and changes in cortical potentials to stimuli
presented in quiet and in noise. These changes did not
occur in an untrained control group. Results have direct
bearing on the interpretation of brain/behavior changes
associated with auditory training programs and require
considerable additional systematic study.

Animal Studies

The distinctive roles of the auditory midbrain, thala-
mus and cortex have been directly explored in an animal
model using identical stimuli used in human studies.
First, elemental acoustic parameters of synthetic speech
stimuli were reflected in auditory pathway responses
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[McGee et aI., 1996]. Second, the encoding of stimulus
change (mismatch negativity) has been shown to occur
predominantly in the nonprimary thalamocortical path-
way. Third, different acoustic contrasts appear to be
encoded at distinct places along the auditory pathway
[Kraus et aI., 1994a, b; Sharma et aI., 1994]. Processing
certain rapid spectrotemporal difference appears to re-
quire the auditory cortex. Fourth, when stimuli were pre-
sented in background noise, neural representation of the
consonant portion was affected to a greater extent than
the vowel portion of the stimulus [Cunningham et aI.,
1999, 2000a, 2001]. The percent decrease in the onset
response that can be attributed to the effects of noise was
greatest at cortical compared to subcortical locations. At
the midbrain, noise reduced the magnitude of low fre-
quency spectral components (FFT analysis), whereas
higher frequency components remained unchanged, mir-
roring FFT findings in NL children using the same stimuli
[Cunningham et aI., 2001]. Fifth, the effects of 'clear'
speech parameter manipulations were assessed in neuro-
physiologic responses in the midbrain, thalamus, and epi-
dural cortex [Cunningham et aI., 2000a]. Onset response
amplitudes increased as the stop gap duration or burst
intensity alone were varied. Combined manipulations
resulted in maximal effects and were not a simple linear
sum of the response of each manipulation alone. In back-
ground noise, 'clear' speech stimuli elicited an onset
response (absent in unenhanced signals). The increase in
the onset response that can be attributed to the effect of
cue enhancement was greater at cortical than subcortical
levels. Cue enhancements did not affect the representa-
tion of steady-state portions of the response. Overall, ani-
mal data on the neural representation of speech in noise
complement the human studies and provide information
about physiologic mechanisms underlying the perception
of speech in NL and LP children.

Summary

LP children demonstrate abnormal perception and neural repre-
sentation of fine-grained stimulus differences. Differences between
normal and LP groups can be attributable to aspects of neural syn-
chrony that are reflected in aggregate neural responses. Deficiencies
in neural synchrony in these children are already apparent in subcor-
tical representation of speech-sound structure, and these timing defi-
cits are related to speech-sound perception and learning measures.
Thus, neural representation of certain speech features - independent
of cognitive and attentional influences - underlies certain learning
and reading disorders. Moreover, impaired perception and neuro-
physiologic encoding of speech sounds in LP children can be
improved with cue enhancement and perceptual learning.
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