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The auditory system should be thought
of as a distributed, but integrated, cir-
cuit that is more than a simple set of
processing stations.

Experiences sculpt the auditory system
and impart a biological ‘memory’ that
can change automatic response prop-
erties from cochlea to cortex.
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Unraveling the Biology
of Auditory Learning:
A Cognitive–Sensorimotor–
Reward Framework
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The auditory system is stunning in its capacity for change: a single neuron can
modulate its tuning in minutes. Here we articulate a conceptual framework to
understand the biology of auditory learning where an animal must engage cogni-
tive, sensorimotor, and reward systems to spark neural remodeling. Central to our
framework is a consideration of the auditory system as an integrated whole that
interacts with other circuits to guide and refine life in sound. Despite our emphasis
on the auditory system, these principles may apply across the nervous system.
Understanding neuroplastic changes in both normal and impaired sensory sys-
tems guides strategies to improve everyday communication.
The cognitive, sensorimotor, and
reward aspects of these experiences
optimize auditory learning.
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Learning, Language, and Communication
Nervous system plasticity has been observed across the animal kingdom from single cells to
sophisticated circuits. Sensory systems are prodigious in their ability to reshape response
properties following learning, and in the auditory system plasticity has been observed from
cochlea to cortex. This learning is fundamental to our ability to function in and adapt to our
environments. Experience navigating this sensory world drives language development – per-
haps the most remarkable auditory learning task humans accomplish – and it is necessary to
understand the principles that govern this plasticity to devise strategies to improve language and
communication in normal and disordered systems.

Here we argue that cognitive, sensorimotor, and reward ingredients engender biological
changes in sound processing. The mechanisms behind these changes lie in two sets of
dichotomous systems: (i) the afferent projections that transmit signals from ear to brain and
the efferent projections that propagate signals from brain to ear; and (ii) the primary and
nonprimary processing streams that suffuse the auditory neuraxis (Figure 1). We highlight
experiments that advance our understanding of the neurophysiological foundations underlying
auditory processing (see Glossary) and that offer objective markers of auditory processing in
humans. Finally, we place learning in the context of a distributed, but integrated, auditory system.

Rethinking the Auditory System: A Distributed, but Integrated, Circuit
Traditional models characterized the auditory system as series of relay stations along an
assembly line, each with distinct functions [1–3]. While these hierarchical models recognized
the interconnectivity of the system, the emphasis was to characterize each nucleus's speciali-
zation. The idea was that understanding each station would build each block necessary to
construct the auditory circuit, and this ‘inside-out’ approach has contributed greatly to our
understanding of auditory neurophysiology.
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Glossary
Auditory neuraxis: the auditory
information processing pathway of
the nervous system that transmits
information back and forth between
the cochlea and cortex.
Auditory processing: a cluster of
listening skills that refers to the ability
to make meaning from sound.
Listeners can have normal hearing
thresholds but still struggle to
process auditory information.
Frequency-following response
(FFR)/auditory brainstem
response to complex sounds
(cABR): a scalp-recorded potential
that comprises aggregate neural
processing of sound details and that
captures a snapshot of the integrity
of auditory processing. While
historically ‘FFR’ referred to
responses to low-frequency pure
tones, the FFR can be as rich and
complex as the eliciting stimulus, and
we use it to refer to neural activity
that ‘follows’ both transient and
periodic acoustic events.
Inhibitory control: the ability to
actively suppress information
irrelevant to the task at hand.
Otoacoustic emissions: sounds
generated by the outer hair cells of
the inner ear; in certain cases these
sounds can be modulated by active
listening.
Phase locking: the ability of auditory
neurons to change their intrinsic
rhythms to follow those of incoming
sounds.
Phoneme: the smallest unit of
speech that conveys a change in
meaning. Phonemic information is
connoted by fine-grained acoustic
contrasts. For example, the acoustic
difference between /b/ and /g/ is
phonemically meaningful, but the
acoustic difference between /p/ in
[putter] and /p/ in [sputter] is not.
Statistical learning: an implicit
process of picking up on the
statistical regularities in the
environment; infants exhibit this ability
and it is thought to be a principal
component of language learning.
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Figure 1. The Auditory System is a Distributed, but Integrated, Circuit. Key to this framework is the rich series of
afferent (ear-to-brain/bottom-up) and efferent (brain-to-ear/top-down) projections that pervade every station along the
auditory pathway, including to and from the cochlear hair cells (inset). These pathways contain primary (darker colors) and
nonprimary (lighter colors) divisions of the auditory system and facilitate both sound processing and neural plasticity.
Successful auditory learning engages cognitive, sensorimotor, and reward networks and the intersection of these circuits
guides neuroplasticity.
We propose a complementary ‘outside-in’ approach. Our view is that the auditory system
should be thought of as a distributed, but integrated, circuit (Figure 1). Any acoustic event
catalyzes activity throughout the auditory neuraxis and we argue that sound processing – and
any assay thereof – is a reflection of this integrated network. Although each structure is
specialized to perform a specific function, this specialization has evolved in the context of
the entire circuit. To understand auditory learning, then, we are forced to move past a focus on
an individual processing station as a single locus of activity, expertise, or disorder.

Our view is consistent with an emerging trend in neuroscience to consider the interplay of
multiple processing stations and the ‘give and take’ between cortical and/or subcortical systems
underlying human behavior [4–8].

Plasticity in the Human Auditory System: A Double-Edged Sword
We regard everyday auditory experience as a learning process that shapes the nervous system,
not least because auditory experience is necessary for the maturation of basic auditory circuits
[9–11,106]. These changes may be exacerbated – for better or worse – and cases of expertise
and deprivation both contribute to understanding how experience shapes auditory circuitry [12].
Neuroplasticity must therefore be viewed as a double-edged sword. The cognitive, sensorimo-
tor, and reward ingredients of auditory experience drive plasticity and a hypothesis based on this
framework is that insults to any of these domains dictate the resulting phenotype.
Trends in Cognitive Sciences, November 2015, Vol. 19, No. 11 643



Box 1. Indexing Auditory Processing in Humans: A Matter of Time

The acoustic world unfolds at once across timescales, from subsecond syllables to multiminute monologues. Much as
the visual system must integrate basic cues such as color, edge, and motion into a coherent object, the auditory system
must integrate acoustic cues across time and frequency into meaningful percepts. It has been argued that insensitivity to
temporal cues at one or more rates may contribute to language impairment [91,94] and so an important goal is to
understand how the brain makes sense of information within and across these timescales.

Neurophysiological responses to speech sounds provide glimpses of the integrity of the processing of key acoustic
features across timescales. The FFR reflects neural processing of fast acoustic information such as subsyllabic cues. A
major advantage of this approach is the physical symmetry between the evoking stimulus and the response (Figure I),
meaning that the latter reflects the integrity with which any acoustic cue is transcribed: consonants and vowels, prosody,
timing, pitch and harmonics, and more. Thus, within a single evoked response rests a plethora of information about how
well details of sound are coded. Indeed, when the FFR is played through a speaker it is recognizable as the eliciting
stimulus [95].

Moreover, FFR properties are linked to everyday listening skills. Few of these are as complex and computationally
demanding as understanding speech in noise, which depends on a series of interactions between factors both
exogenous (the talker, his or her accent, the language being spoken, and the acoustics of the room and noise) and
endogenous (the listener and his or her experience, cognitive abilities, and hearing acuity). Due to these demands –

particularly the demands for speed and precision in auditory processing – it stands to reason that any number of insults
may constrain these processes; indeed many clinical populations exhibit difficulties recognizing speech in noise. In this
regard, the ability to recognize speech in noise may reflect overall brain health. FFR properties are linked to these listening
challenges, suggesting that it may be an approach to uncover individual differences in listening abilities and their
responses to intervention [96–100], thereby providing a biological indication of brain health. FFR is agnostic to a subject's
age and species: the same protocols have been used as early as infancy [101], across the lifespan [102], and in animal
models [103], presenting granularity and uniformity to the study of sound processing. Thus, it can provide an approach to
inform links between neural function and everyday communication such as hearing speech in noise.

The response reflects acous�c 
details of the s�mulus.

Figure I. The FFR is as Complex as the Eliciting Stimulus and Mirrors Many of the Physical Properties.
Of particular interest in our research program is the neural coding of fast auditory events, such as
the details that convey phonemic identity in speech (Box 1). Our laboratory has developed an
approach to index the influence of life experience on the neural coding of these fast acoustic
details called the frequency-following response (FFR). We have previously referred to this as
the auditory brainstem response to complex sounds (cABR), but fear that this terminology
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Key Figure

Measuring Neural Responses to Speech Allows Us to Evaluate Auditory
Processing – and the Legacy of Auditory Experience – in Humans
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Figure 2. Scalp electrodes pick up neural firing in response to sound and the brainwave recapitulates a life in sound by
reflecting the fine-tuning of the hearing brain through experience. The nature of an individual experience shapes the nature of
the plasticity: different elements of sound processing are selectively modulated, for better or worse, within an individual. This
is illustrated through a mixing-board analogy, with several aspects of sound processing illustrated; the short bars reflect
enhancements (above midline) or diminutions (below midline) of auditory processing. Bars at the halfway point reflect
aspects of sound processing that appear unaffected by that particular experience. Although we highlight several aspects of
sound processing in this illustration, much more may be glimpsed through these neurophysiological responses.
undermines the integrated and experience-dependent nature of the activity it indexes. The FFR is
as complex as the eliciting stimulus and we use ‘FFR’ to refer to the product of aggregate neural
activity in the auditory midbrain that reflects the coding of aggregate speech features, including
activity that ‘follows’ both transient and static acoustic cues; because the auditory midbrain is a
‘hub’ of intersecting afferent and efferent auditory projections, in addition to projections to and
from non-auditory cortices, its response properties are shaped by this constellation of cognitive,
sensory, and reward input (Figure 2, Key Figure). Thus, despite its subcortical basis, the FFR
reflects the distributed, but integrated, activity emblematic of auditory processing.

This research emphasizes the imprint of changes to the auditory system that affect the automatic
sound processing that is always on and cannot volitionally be turned off, even after training has
stopped [13,14]. Thus, biological infrastructure in the auditory system is influenced by an
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individual's life in sound. No two people hear the world exactly the same way because acoustic
experiences impart enduring biological legacies (Figure 2).

Cognitive Influences on Auditory Processing
The cognitive component of our framework is grounded in these principles: (i) listening is an
active process that engages cognitive networks; (ii) the precision of automatic sound processing
in the brain is linked to cognitive skills such as attention and working memory; and (iii) the
cognitive systems engaged during listening selectively modulate the aspects of sound that are
behaviorally relevant. The legacy of this repeated, active engagement is engrained in the nervous
system over time as listeners make sound-to-meaning connections.

Speech understanding relies on the ability to pull on cognitive functions such as working memory
and attention [15–18]; engagement of these systems strengthens the neural circuits that
facilitate listening [19]. One study showed that cognitive factors shape auditory learning in
an experiment comparing two groups of rats [20]. The first group trained to attend to frequency
contrasts in a set of tones, whereas a different group trained on intensity contrasts; crucially,
identical stimulus sets were used in the two groups. Cortical maps changed along the acoustic
dimension that was trained, demonstrating that what is relevant to an animal dictates map
plasticity (see also [107]).

In humans, several studies show links between the integrity of the neural processing of sound
and cognitive abilities [21], suggesting that the legacy of cognitive engagement is revealed
through the precision of neural function. Additionally, this suggests that training to strengthen a
cognitive skill propagates to sensory systems [22–24].

Many of these insights come from studies of music training, which provides a model to
understand the biology of auditory learning [25–27]. Making music requires an individual to
engage multiple cognitive systems and to direct attention to the sounds that are heard,
produced, and manipulated. The physical act of producing sound – through instrument or
voice – mandates intricate motor control and stimulates auditory–motor projections [28]. In
addition, music is an inherently rewarding stimulus that elicits activity throughout the limbic
system [29]. The musician's brain has been finely tuned to process sound and the musician is a
case to explore what is possible in terms of experience-dependent plasticity.

Regarding cognitive–sensory coupling, individuals with music training exhibit stronger neural
coding of speech in noise concomitant with heightened auditory working memory [30]. Contrast
this with a bilingual, who exhibits stronger neural coding of pitch cues concomitant with
heightened inhibitory control [31]. A musician needs to pull out another instrument's ‘voice’
from an ensemble while mentally rehearsing a musical excerpt, facilitating the processing of
signals in a complex soundscape and exercising working memory. However, a bilingual needs to
actively suppress one mental lexicon while using voice pitch as a cue to activate the appropriate
one. Whereas music training is associated with superior speech recognition in certain types of
background noise [32,33] (cf. [34]), the cognitive systems engaged through bilingualism create a
different situation. Bilinguals have superior recognition of non-speech sounds in noise but inferior
recognition of speech in noise, due to cognitive interference from the mental lexicon they are
attempting to suppress during active listening [35,36]. Thus, the impact of this cognitive–sensory
coupling for everyday listening skills depends on what constellation of cognitive and sensory
skills are rehearsed. This juxtaposition illustrates an important principle of auditory plasticity:
cognitive systems tune into particular details of sound and selectively modulate the sensory
systems that represent those features (Figure 2). By analogy, then, auditory learning may be
thought of as a ‘mixing board’ more than a single ‘volume knob’, with distinct aspects of neural
coding selectively modulated as a function of the precipitating experience [37,38]. This contrast
646 Trends in Cognitive Sciences, November 2015, Vol. 19, No. 11



also reinforces the notion of a double-edged sword in experience-dependent plasticity and adds
a layer of nuance: within an individual some listening skills may be strengthened whereas others
may be suppressed.

There is similarly a tight interplay between cognitive and sensory losses; older adults with hearing
loss exhibit faster declines in working memory, presumably because degraded auditory acuity
limits opportunities for cognitively engaging and socially rewarding interactions [39]. Training
these cognitive skills, however, cascades to boosts in sensory processing. For example, older
adults have delayed neural timing in response to consonants but not vowels [40]; auditory–
cognitive training that directs attention to consonants (including built-in reward cues) reverses
this signature aging effect [23]. Similar phenomena are observed following cognitive interven-
tions in the visual system [24,41].

These studies illustrate that identical neural pathways are imputed in disorder and its remediation
and are consistent with the view that both should be conceptualized as auditory learning. They
demonstrate how fine-grained aspects of sound processing are selectively modulated based on
the cognitive demands and bottlenecks of the experience (Figure 2). Moreover, these cases
exemplify the coupling between the integrity with which the nervous system transcribes sound
and the cognitive skills important for everyday listening.

Sensorimotor Influences on Auditory Processing
The sensorimotor component of our framework is grounded in these principles: (i) the infra-
structure responsible for encoding basic sound features is labile; (ii) extreme cases of deprivation
and expertise illuminate mechanisms that apply to a typical system; and (iii) the entire auditory
pathway – including the hair cells – can be thought of as sites of ‘memory storage’ because
response properties reflect the legacy of auditory experience(s).

Basic sensory infrastructure has a potential for reorganization. The most extreme examples
comprise cases of profound deprivation, such as deafness, blindness, or amputation, where
sensory cortices are coopted by circuits dedicated to the remaining senses, but only after a
period of adaptation (that is, learning) [42,43,108]. These extremes illustrate the brain's potential
for reorganization and the mechanisms underlying this remodeling.

In terms of expertise, music again offers a model for auditory learning. Musicians process sound
more efficiently even when not playing music, suggesting that repeated active engagement with
sound shapes the automatic state of the nervous system [19]. The imprint of music training extends
all the way to the outer hair cells of the cochlea [44,45]. The musician model also demonstrates that
sensory input alone is insufficient to drive neural remodeling: comparisons between children
undergoing active music training (that engages cognitive, motor, and reward networks) and those
in music appreciation classes have shown neurophysiological changes only in the former [46].
Thus, sensory input may be necessary, but not sufficient, for auditory learning [47].

With regards to language learning, evidence from songbirds demonstrates a causal role for the
basal ganglia in song learning [48], suggesting a role for the motor system in language learning.
We are just beginning to learn how the motor system is involved in auditory learning in humans,
but it seems that motor acuity is tied to language abilities [49,50] and that training rhythmic skills
can boost literacy skills [51]. The rhythm–language link may underlie the observation that music
training confers gains in reading achievement.

Finally, we mention an example of sensory learning that on its surface appears to occur
automatically. Infants quickly learn statistical regularities in the acoustic environment and this
is thought to contribute to language acquisition [52]. However, not even these ostensibly passive
Trends in Cognitive Sciences, November 2015, Vol. 19, No. 11 647



learning processes are exempt from cognitive influence: prior experience and active expecta-
tions guide statistical learning [53,54]. Thus, as young as infancy, listeners can connect
incoming sounds to meaning and also exert meaning on incoming sounds, reinforcing the
interplay between sensorimotor and cognitive systems in auditory learning.

Reward (Limbic) Influences on Auditory Processing
The reward component of our framework is grounded in these principles: (i) reward systems
spark reorganization in fundamental auditory infrastructure; (ii) social and reward contexts gate
auditory learning in humans; but (iii) limbic input can create the conditions to learn something that
does not optimize auditory processing.

We learnwhat wecare about. Consequently, the limbic system is likely to facilitate neural remodeling.
Classic studies show that stimulation of the cholinergic nucleus basalis galvanizes cortical map
reorganization [55,56] see also [109,110]. Aberrant sensory–limbic coupling, in turn, is involved in
disorders such as tinnitus [57], but also in their treatment [47]. This again emphasizes that identical
networks are implicated in conditions of both enhancement and diminution of sound processing.

Less is known about how the limbic system guides auditory learning in humans, in part due to
practical limitations in controlling the expression of neuromodulators (although early evidence is
promising [58]). Once again, music training provides a model: listening to and producing music
activates multiple auditory–limbic projections [29,59]. Given that music training directs attention
to minute details of sound in a rewarding context, it stands to reason that these neuromodulators
play a role in the resulting neural remodeling.

The limbic system may also play a role in language development. It has been argued that infants
must tune into the aforementioned statistical patterns in the auditory environment to jumpstart
language learning, but that these computations are gated by social (i.e., reward) context [60]. For
example, infants learn non-native phonemic contrasts when they are modeled by a tutor
speaking ‘motherese’, but only if that tutor is present and interacting with the child – a video
of the tutor is insufficient [61].

Deficits in reward input, then, are hypothesized to contribute to language impairment. Children
with autism, for example, exhibit reduced functional connectivity between limbic structures and
voice-selective auditory cortex, which suggests a decoupling of sensorimotor and reward
networks during everyday listening [62]. Indeed, many children with autism show poor neural
coding of prosodic cues that convey emotional and pragmatic information [63].

Children whose mothers have relatively low levels of education – a proxy for socioeconomic status
– present a different case of deprivation. Children in these homes hear approximately 30 million
fewer words than their peers; in addition, they hear two-fifths of the number of different words,
meaning that both the quantity and the quality of their everyday linguistic input is impoverished [64].
Consider that a mother's voice is perhaps the single most rewarding sensory cue available to a
child. If the sensory input is impoverished, but the conditions are right for learning, what is learned
may itself be impoverished. This linguistic impoverishment is reflected by poor neural coding and
cognitive skills [65] (Figure 2). This is consistent with evidence from animal models that environ-
mental deprivation constrains nervous system development; environmental enrichment, however,
reverses this maladaptive plasticity [66], reinforcing the concept of auditory learning as a double-
edged sword. This hypothesis also aligns with evidence that task reward structure shapes not only
whether plasticity occurs, but how it manifests [67,68].

Taken together, these studies illustrate that, on the one hand, a lack of reward structure stymies
the mechanisms of auditory learning. On the other hand, sufficient reward structure with an
648 Trends in Cognitive Sciences, November 2015, Vol. 19, No. 11



impoverished content may cause learning of the wrong material. Presumably, this principle
applies to the cognitive and sensorimotor aspects of auditory learning as well.

Mechanisms of Learning
Having laid the groundwork to understand that cognitive, sensorimotor, and reward systems are
necessary to drive neural remodeling, the question arises: how do these systems influence
automatic sound processing?

Two anatomical dichotomies help navigate this integrated circuit and its role in auditory learning:
afferent versus efferent projections and the primary versus nonprimary pathways.

Afferent and Efferent Projections: Bottom-Up Meets Top-Down
The first dichotomy comprises the projections that feed signals forwards and backwards
through the auditory system (Figure 1). The bottom-up afferent projections transmit infor-
mation forwards to accomplish signal processing (‘ear to brain’) whereas the top-down
efferent projections propagate signals backwards (‘brain to ear’); both extend between
the cochlea and cortex [69] and the latter mediates remodeling in subcortical structures
[70,71].

Our proposal is that the efferent network shapes automatic response properties in cochlear and
subcortical systems, which is why the basic response properties of the auditory system, such as
otoacoustic emissions and electrophysiological responses, reflect life experiences in sound. It
has been argued that similar mechanisms underlie both attention-driven online changes and
long-term plasticity [67]. This leads to the hypothesis that if these experiences that engage
cognitive, sensorimotor, and reward systems are repeated sufficiently they can, over time,
facilitate functional remodeling by imparting a ‘memory’ to afferent processing [19,72] and future
learning [73–75].

We hypothesize that the efferent system has become larger and more intricate evolutionarily with
increasingly sophisticated auditory behaviors. Numerous complex auditory behaviors – many of
which are important for listening in everyday situations – are similar across species. This includes
the learning observed in animals with precocious auditory abilities such as bats [76], ferrets [77],
and humans [78]. This may be due to convergent evolution, the independent evolution of a trait in
distinct lineages based on the needs of the organism. These behaviors are perhaps most
sophisticated in humans (Figure 3) and we speculate that the convergent evolution of efferent
projections may underlie some of these behaviors and the key role that auditory learning plays in
developing the skills necessary for effective everyday communication. If one accepts that
language learning pulls on the circuitry necessary for auditory learning, one could imagine a
role for the efferent system in language development and poor activation of these top-down
networks as a chief factor in language impairment [79].

Primary and Nonprimary Divisions
The second dichotomy pertains to auditory structures such as the cochlear nucleus, inferior
colliculus, thalamus, and cortex: the distinction between primary and nonprimary pathways (also
known as lemniscal and paralemniscal, cochleotopic and diffuse, or highway and country road;
Figure 4). Neurons in the primary pathway are biased to respond to auditory stimuli, whereas the
nonprimary neurons are more multisensory. The primary pathway is tonotopically organized,
shows sharp tuning, and strongly phase locks to the stimulus, whereas the nonprimary
pathway is not especially tonotopic, has broader tuning, and does not time lock as strongly
to stimuli [80]. Partly for these reasons, it is thought that the primary auditory cortex (‘core’)
represents nearly all incoming signals whereas the nonprimary cortex (‘belt’ and ‘parabelt’)
specializes for communication signals such as speech and music [81–83].
Trends in Cognitive Sciences, November 2015, Vol. 19, No. 11 649



Tree frogs exploit
spa�al cues to 
iden�fy a mate 
at a noisy pond.

Animals need to listen
to iden�fy predator and
prey, and dis�nguish these
from environmental sounds.

FOXP2, a gene important
for language learning,
has been found in the
neanderthal genome.

Humans have a remarkable
ability to adapt to the sensory
environment and make meaning
of signals in noise.

Top-down projec�ons

Figure 3. We Propose That the Corticofugal System (Top-Down Projections) Has Become Richer Evolu-
tionarily, with a Larger Number of, and More Connections Between, Fibers with Increasing Phylogenetic
Sophistication. We speculate that this underlies some of the increasingly sophisticated behaviors observed across
species. These behaviors are likely to have emerged convergently; that is, they evolved independently in distinct lineages as
a function of the organism's communication needs. Frogs are capable of exploiting many of the basic acoustic cues we use
in complex soundscapes, such as spatial hearing and listening in dips in background noise [104]. More sophisticated
animals had to make meaning through diverse environmental sounds, learning both to ignore the rustling wind and to hustle
when a predator approached. We propose that language learning is contingent on the rigor and activation of this system,
and it is interesting to note that our close genetic ancestor Homo neanderthalensis carried FOXP2 [105], a gene implicated in
language learning and impairment.
Adopting our systems-wide perspective, however, an additional distinction emerges: the
primary processing stream preferentially codes fast temporal information whereas the non-
primary stream codes relatively slow information [84–86]. This hypothesis is consistent with
evidence from the rat trigeminal system [87] and primate visual system [88] that parallel path-
ways code fast and slow information. The functional consequences for language development
are only beginning to be understood; however, preliminary evidence suggests that deficits in
either fast or slow auditory–temporal processing may lead to language impairment, but may not
necessarily co-occur [89–91].

Less is known with regard to learning and the primary versus nonprimary pathways. The
nonprimary pathway has been implicated in rapid task-related plasticity, such as adapting to
stimulus context [92] and classical conditioning [93]. During active listening, neurons in the
prefrontal cortex first change their tuning, followed by neurons in the nonprimary auditory cortex,
and then finally neurons in the primary auditory cortex [7]. This leads to the hypothesis that the
nonprimary system is more labile than the primary circuitry and may facilitate rapid online learning
and adaptation in connection to cognitive and reward circuits. We speculate that changes to the
afferent pathway are biased towards stability: the system exhibits a more enduring physiology
that resists transient changes and relatively few of the projections exhibit task-related evanes-
cence (Figure 4). Conversely, the efferent pathway is biased towards in-the-moment changes;
this evanescence facilitates phenomena such as selective attention to one speaker. This system
is relatively less persistent in sound processing. The more an activity is done, repeated, and over-
learned, the more likely remodeling will occur in the primary pathway and, eventually, influence
afferent processing.
650 Trends in Cognitive Sciences, November 2015, Vol. 19, No. 11



Outstanding Questions
How do auditory experiences layer and
interact across an individual's life? How
does attention in the past facilitate or
constrain future learning?

How do the indices of learning discov-
ered in subdivisions of the auditory
pathway work together as functional
processing of sound becomes shaped
by experiences?

Is the neural processing of particular
sound details more or less malleable
with experience?

How does the auditory system balance
temporal processing across timescales
of acoustic information? Is there a sin-
gle ‘timekeeper’ of nested oscillators or
is each distinct? Does plasticity at one
timescale of auditory processing imply
plasticity at multiple timescales?

What ‘dosage’ of auditory training is
necessary to impart meaningful and
lasting neurophysiological and behav-
ioral changes? Our framework would
predict that training combining cogni-
tive, sensorimotor, and reward compo-
nents would be optimized for fast and
long-lasting changes.

Can evolutionary, comparative studies
of the corticofugal pathway explain
the phenomenal learning capacity
observed in acoustically sophisticated
species? Is this interconnectedness at
the heart of language and auditory
learning? We speculate that the ability
to learn and modulate sensory infra-
structure has increased evolutionarily
and thus the influence of auditory learn-
ing on everyday behavior is greater in
more sophisticated species (see Fig-
ure 3 in main text).

How does our framework for auditory
processing extend to other sensory
systems?

How can the lessons of auditory learn-
ing be transferred outside the labora-
tory and into clinical, educational, and
community settings?

Primary

Non-primary

Enduring

Evanescent

Enduring

Evanescent
Afferent (brain ←

 ear)

Efferent (brain →
 ear)

Reward

Cogni�ve

Sensory

Key:

Figure 4. The Primary and Nonprimary Pathways Operate in Parallel throughout the Auditory System. Each is
schematized as a wedge. The larger ear-to-brain wedge (afferent primary) illustrates the predominantly enduring automatic
processing whereas the smaller ear-to-brain wedge (afferent nonprimary) illustrates the relatively smaller degree of
evanescence. This dichotomy is flipped in the efferent system, where the larger wedge (efferent nonprimary) shows a
predominance of evanescence in processing whereas the smaller wedge (efferent primary) suggests that this system is
relatively less stable. The trade-off between stability and evanescence between the afferent and efferent systems may
underlie the ability to maintain enough plasticity to adapt to new situations while also retaining enough stability to pull on
previous experiences (language, memory, knowledge of the sensory world). The more an auditory activity is performed,
repeated, and over-learned, it transfers to the primary pathway, which becomes a repository of auditory experience by virtue
of changes to its basic response properties.
This primary-enduring, nonprimary-evanescent distinction may underlie the capacity to strike a
balance between the stability of auditory processing and malleability in attention, adaptation, and
learning (see Outstanding Questions).

Concluding Remarks and Future Directions
We have reviewed the auditory system's ability to change. In particular, we have argued that
cognitive, sensorimotor, and reward systems optimize auditory learning and that this learning
underlies success in everyday language and communication. We have also argued that the
auditory system should be thought of as a distributed, but integrated, circuit that is a moving
target; for better or worse, its response properties change through the interplay of cognitive and
reward circuits during everyday listening. Thus, both expertise and disorder should be consid-
ered from a common standpoint of neuroplasticity. While our emphasis has been on the auditory
system, we argue that these principles extend to other sensory systems [4,6,8].

The recognition that states of decline, deprivation, and disorder should be viewed through a lens
of plasticity suggests that they may, in part, be reversible. If the same pathways are responsible
Trends in Cognitive Sciences, November 2015, Vol. 19, No. 11 651



for expertise and disorder, the conditions that facilitate expertise may ameliorate communicative
difficulties. Our framework therefore makes a clear case for auditory training as an intervention for
listening and language difficulties, and – providing the training integrates cognitive, sensorimotor,
and reward systems – early evidence is promising.

Finally, we have highlighted how measuring the integrity of sound processing at basic levels of
the auditory system opens a window on human communication and the imprint of a life spent in
sound. A healthy brain is labile and stable, able to adapt to new environments while pulling on
knowledge and experience to make sense of the sensory world. Thus, in addition to motivating
and informing interventions, our framework can help facilitate training by identifying an individu-
al's strengths and weaknesses in the neural processes important for everyday communication.
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