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Abstract

Bl To make sense of our ever-changing world, our brains
search out patterns. This drive can be so strong that the brain
imposes patterns when there are none. The opposite can also
occur: The brain can overlook patterns because they do not
conform to expectations. In this study, we examined this neural
sensitivity to patterns within the auditory brainstem, an evo-
lutionarily ancient part of the brain that can be fine-tuned by
experience and is integral to an array of cognitive functions.
We have recently shown that this auditory hub is sensitive to
patterns embedded within a novel sound stream, and we
established a link between neural sensitivity and behavioral
indices of learning [Skoe, E., Krizman, J., Spitzer, E., & Kraus,
N. The auditory brainstem is a barometer of rapid auditory
learning. Neuroscience, 243, 104-114, 2013]. We now ask
whether this sensitivity to stimulus statistics is biased by prior
experience and the expectations arising from this experience.
To address this question, we recorded complex auditory brain-
stem responses (CABRs) to two patterned sound sequences
formed from a set of eight repeating tones. For both patterned

INTRODUCTION

When it comes to learning, our past influences the pres-
ent. For example, picking up Italian is easier if you
already know Spanish, learning to play squash comes
quicker if you are an avid tennis player, and mastering
the rules of the card game Whist is simpler after learning
Bridge. Although these examples suggest that prior ex-
perience bootstraps future learning, the past can also
impose constraints on learning, making it difficult to
learn new sound contrasts, muscle movements, or rules
that conflict with ingrained knowledge (Bialystok, Craik,
Klein, & Viswanathan, 2004; Maye, Werker, & Gerken,
2002; Tahta, Wood, & Loewenthal, 1981). Here we show
how this dependence on the past percolates into even the
most basic neural mechanisms (Skoe, Krizman, Spitzer, &
Kraus, 2013; Wen, Wang, Dean, & Delgutte, 2009; Dean,
Harper, & McAlpine, 2005; Perez-Gonzalez, Malmierca, &
Covey, 2005), like statistical learning.
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sequences, the eight tones were presented such that the
transitional probability (TP) between neighboring tones was
either 33% (low predictability) or 100% (high predictability).
Although both sequences were novel to the healthy young
adult listener and had similar TP distributions, one was per-
ceived to be more musical than the other. For the more musical
sequence, participants performed above chance when tested
on their recognition of the most predictable two-tone com-
binations within the sequence (TP of 100%); in this case, the
cABR differed from a baseline condition where the sound
sequence had no predictable structure. In contrast, for the less
musical sequence, learning was at chance, suggesting that
listeners were “deaf” to the highly predictable repeating two-
tone combinations in the sequence. For this condition, the
cABR also did not differ from baseline. From this, we posit that
the brainstem acts as a Bayesian sound processor, such that it
factors in prior knowledge about the environment to index the
probability of particular events within ever-changing sensory
conditions. W

Statistical learning is a mechanism for finding patterns
within a continuous stream of information, such as an
incoming speech stream. By tracking the probabilities
of different sounds co-occurring within the environment,
statistical learning can lead to the discovery of word
boundaries and other structure (Saffran, Aslin, & Newport,
1996). Although described most often within the context
of speech segmentation (Saffran et al., 1996), statistical
learning is not unique to language (Francois & Schon,
2011; Kudo, Nonaka, Mizuno, Mizuno, & Okanoya, 2011;
Saffran, Johnson, Aslin, & Newport, 1999) or even the
auditory domain (Turk-Browne, Scholl, Chun, & Johnson,
2009; Baldwin, Andersson, Saffran, & Meyer, 2008), sug-
gesting that it is a domain-general process (Saffran et al.,
1999). In fact, statistical learning is considered to be an
outgrowth of how the nervous system is wired (Tallal &
Gaab, 2006; Kvale & Schreiner, 2004; Tallal, 2004). In
support of this proposition, neurons across the central
auditory pathway, from the brainstem to the cortex, adjust
their firing patterns based on the statistical properties of
the soundscape (Antunes, Nelken, Covey, & Malmierca,
2010; Malmierca, Cristaudo, Perez-Gonzalez, & Covey,
2009; Wen et al., 2009; Nelken & Ulanovsky, 2007; Dean
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et al., 2005; Perez-Gonzalez et al., 2005; Ulanovsky, Las,
Farkas, & Nelken, 2004; Ulanovsky, Las, & Nelken, 2003).
Moreover, we have recently shown that behavioral out-
comes of statistical learning can be predicted from the
brainstem’s ability to lock onto patterns, suggesting that
the auditory brainstem is part of the neural circuitry medi-
ating rapid, online statistical learning (Skoe et al., 2013).
We now address whether the brainstem’s online sensi-
tivity to sound statistics is absolute or historically biased.
There is ample evidence that short-term and long-term
auditory experiences transform how the brainstem rep-
resents behaviorally relevant signals (reviewed in Kraus &
Chandrasekaran, 2010), but we are the first to examine
whether online probability detection within the auditory
brainstem interacts with statistical information accrued
over one’s lifetime.

We tested two competing hypotheses for how the
brainstem calculates statistical probabilities, which we refer
to as the Frequentist Brainstem Hypothesis and the
Bayesian Brainstem Hypothesis. We formulated and named
these hypotheses based on two different approaches to
probability calculations that are often debated in the sta-
tistics literature. In brief, Frequentist probability defines
an event’s probability based on its relative frequency over
a large number of trials, whereas Bayesian probability
assumes that prior information can guide the statistical
probability calculation process (Berger & Bayarri, 2004).
Although we are the first to apply these two approaches
to the study of the auditory brainstem, Bayesian frame-
works have been adopted for studying human perception
(Mamassian, Landy, & Maloney, 2002), neural compu-
tations (Fiorillo, 2008, 2010), and statistical learning (Lew-
Williams & Saffran, 2012). At the core of these Bayesian
cognitive science frameworks is the assumption that
biological systems use prior knowledge about the envi-
ronment and the plausibility of particular events to pro-
cess and interpret the ever-changing sensory world.

Our Frequentist Brainstem Hypothesis posits that the
indexing of statistical information in the auditory brain-
stem factors in only the frequency with which a sound
or sound combination occurs within the current sen-
sory environment. In support of this hypothesis, brain-
stem and midbrain structures are known to be sensitive
to statistical regularities within novel sound streams
(Gnanateja, Ranjan, Firdose, Sinha, & Maruthy, 2013;
Skoe et al., 2013; Parbery-Clark, Strait, & Kraus, 2011,
Chandrasekaran, Hornickel, Skoe, Nicol, & Kraus, 2009;
Malmierca et al., 2009; Perez-Gonzalez et al., 2005). For
example, using an oddball paradigm, we recently dem-
onstrated that the frequency of a sound’s occurrence
modulates the encoding of novel pitch contours within
the complex auditory brainstem response (cABR; Skoe,
Chandrasekaran, Spitzer, Wong, & Kraus, 2014). The alter-
native, Bayesian Brainstem Hypothesis, posits that the
auditory brainstem is a subjective sound processor that
factors in prior experience when calculating the proba-
bility of sounds co-occurring within the current sensory

environment. This hypothesis is rooted in the fact that
the brainstem is a site of experience-dependent plasticity
(Tzounopoulos & Kraus, 2009). For instance, the auditory
brainstem response (ABR) is fine-tuned to the language
one speaks (Krishnan & Gandour, 2009), the musical in-
strument one plays (Strait, Chan, Ashley, & Kraus, 2012),
as well as sound features acquired through short-term
and long-term auditory training (Strait & Kraus, 2014;
Anderson, White-Schwoch, Parbery-Clark, & Kraus, 2013;
Chandrasekaran, Kraus, & Wong, 2012; Song, Skoe, Banai,
& Kraus, 2012; Krizman et al., 2012; Carcagno & Plack,
2011; de Boer & Thornton, 2008). The brainstem is also
sensitive to the familiarity of the sound (Galbraith et al.,
2004) and the statistical probability of sounds co-occurring
within one’s daily environment (Marmel, Parbery-Clark,
Skoe, Nicol, & Kraus, 2011). Consistent with this Bayesian
hypothesis, Slabu, Grimm, and Escera (2012) showed that
novelty detection in the human auditory brainstem is not
general to all sounds but is specific to canonical members
of a sound category (Slabu et al., 2012).

We tested these competing hypotheses in healthy
adults by recording cABRs to sound streams that differed
in their novelty. cABRs are compound electrical signals that
reflect the synchronous activity of neuronal populations
in the auditory brainstem and midbrain (Chandrasekaran
& Kraus, 2010; Skoe & Kraus, 2010a). Recordings were
made to two patterned sound sequences composed of
the same set of eight complex tones but differing in which
tone pairs were adjacent, with one of the novel sequences
being perceived as more musical (i.e., less novel) than the
other. cABRs to patterned conditions (“less musical” and
“more musical”) were compared with a pseudorandom,
baseline condition (henceforth referred to as the “random”
condition), in which the order of tones was arbitrary.
Neural sensitivity to stimulus statistics, we predicted, would
emerge as a difference from baseline with greater differ-
ences from baseline reflecting greater sensitivity. Immedi-
ately after exposure to the novel sound sequences,
participants were tested on how well they recognized
which tone pairs always co-occurred within the sequence.

We used musicality as a way to tap into prior expe-
rience and its influence on how the auditory brainstem
processes statistical information within the soundscape.
Musical knowledge develops implicitly by listening to the
radio, hearing TV theme songs, singing in school, etc. (Loui,
Wessel, & Hudson Kam, 2010; Morrison, Demorest, &
Stambaugh, 2008; Schellenberg, Bigand, Poulin-Charronnat,
Garnier, & Stevens, 2005; Krumhansl & Keil, 1982). In fact,
even without formal music training, kindergarten children
have acquired substantial tacit knowledge about the struc-
tures defining their culture’s music, including which sound
combinations are more common (Schellenberg et al.,
2005; Vos & Troost, 1989; Krumhansl & Keil, 1982). We
predicted that this knowledge creates expectations that
constrain how adults listen to novel tonal sequences: We
presumed that learning the statistics of a new sound sys-
tem is facilitated when the statistics are already familiar
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and conform to the listener’s expectations. Yet when the
statistics conflict with these expectations or do not match
engrained templates, learning would be impeded, resulting
in poorer behavioral performance. Moreover, if the auditory
brainstem is sensitive to the long-term history of input and
not just the statistics of the immediate sensory context,
then under our Bayesian Brainstem Hypothesis, we pre-
dicted that subcortical sensitivity to stimulus statistics
would be greater for sound combinations that have been
prevalent in past encounters with sound and are therefore
more familiar to the listener, compared with combinations
that are less prevalent and therefore less familiar. That is,
under the Bayesian Brainstem Hypothesis, we predicted
that because the listeners had less prior real-world experi-
ence with the pattern combinations of the less musical se-
quence (Arciuli & Simpson, 2011; Schon & Francois, 2011),
it would be harder to learn than the more musical se-
quence, from both a behavioral and neurophysiological
perspective, and as such it would be processed more like
an unstructured, pseudorandomized sequence. Yet, if
subcortical sensitivity to stimulus statistics does not change
as a function of familiarity and therefore is not different
between the two musical conditions, then this would pro-
vide evidence in support of the Frequentist Brainstem
Hypothesis.

METHODS
Participants

Fifty-four young adults with no history of hearing impair-
ment or neurological dysfunction participated in this
study (35 women, age range = 18.03-29.04 years). Written
informed consent was obtained from all participants, and
all experimental protocols were reviewed and approved
by Northwestern University’s institutional review board.
To assess hearing sensitivities, all participants under-
went bilateral pure tone air-conducted hearing testing (octave
frequencies between 125 and 8 kHz), in addition to click-
evoked ABR testing at 80 dB SPL (31/sec; Navigator Pro,

Table 1. Participant Characteristics

Bio-logic Systems, Inc., Mundelein, IL; Table 1). All par-
ticipants were confirmed to have age-normal pure tone
thresholds (<20 dB nHL) across all frequencies tested in
addition to click-evoked ABR wave V latencies within
normal limits (<6.1 msec).

Overview of the Experimental Design

ABRs to complex sounds (cABRs) were obtained using
scalp electrodes while participants listened to a continuous
series of complex tones that formed either a random or
patterned sequence (Figure 1). The patterned sequences
were composed of four pseudorandomly repeating tone
doublets that were strung together into a seamless se-
quence (Figure 2). All participants heard two conditions,
with the random sequence presented first. For the second
condition, participants were quasirandomly parceled into
three matched groups, each comprising 18 participants.
Depending on their group assignment, participants heard
the more musical sequence (Group 1), the less musical
sequence (Group 2), or a repeat of the random sequence
(Control Group). After 15 min of hearing the patterned
conditions, the experimental groups (Groups 1 and 2) were
quizzed on how well they had segmented the sequence
they heard into its constituent doublets. The inclusion of
the control group helped to confirm that the cABR is stable
in the absence of experimental manipulation (Song, Nicol,
& Kraus, 2011; Chiappa, Gladstone, & Young, 1979). The
control group also underwent behavioral testing after the
electrophysiological testing; however, the content of the
quiz was different from the other two groups (see below).

Participants were blind to their group assignment. The
three groups did not differ with respect to age, sex, pure
tone hearing thresholds, click-evoked ABR latency, years
of musical training (self-report), intelligence (Wechsler
Abbreviate Scale of Intelligence, Vocabulary, and Matrix
Design subtests combined into a two-scale standard score)
and auditory working memory (Woodcock Johnson Test
of Cognitive Achievement, Numbers Reversed and Auditory

ABR: Click Auditory

Age 10 Hearing Threshold Wave V. Working Memory
Group Sequence 1 Sequence 2  No. of Men  (years) (Standard Score) (nHL) (msec)  (Standard Score)
1 R P: More musical 7 20.8 (1.32) 122.06 (12.46) 5.74 (3.98) 5.67 (0.14) 116.78 (10.94)
2 R P: Less musical 8 21.62 (2.69) 125.56 (11.74) 444 (355)  5.69 (0.14) 116.94 (10.99)
Control R R 4 22.06 (2.55) 125.18 (7.43) 495 (3.14)  5.61 (0.28) 11739 (14.13)
F 1.426 0.649 0.599 0.960 0.030
p .250 527 533 .390 971

Participants were pseudorandomly divided into three groups (18 participants/group) that were matched with respect to age, 1Q, hearing thresholds,
and click-evoked ABR wave V latency. Means are reported, with standard deviations in parentheses. For hearing thresholds, we report the average
hearing sensitivity across both ears at 500, 1000, and 2000 Hz. This combination of frequencies is a commonly used estimate of hearing. The F and
 statistics of the one-way ANOVA are repoted at the bottom of the table. R = pseudorandom stimulus sequence; P = patterned stimulus sequence.
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Figure 1. Experimental
overview. ABRs to complex
sounds (cABRs) were obtained
using scalp electrodes while
participants listened to
continuous sequences of
complex tones that formed

either a random or patterned
sequence composed of four

recurring patterns (red = more
musical, blue = less musical). GFOUp 1 [

Each 5-min sequence was
presented three times, with

intervening breaks. Electrodes
were placed on the central Group 2 [ I I

=g Quiz
patterned-more musical
JjLJJ 8 &
patterned-less musical J
JLJ b &

vertex, forehead, and right
earlobe. During the experiment,

unpatterend

participants sat in a comfortable
reclining chair in a soundproof,

Control [ ] I

| ) I | I |

electrically shielded booth.
Participants were instructed to

stay awake while the sounds
were presented and to keep
their gaze on the nature images
appearing on the screen in

=100 trials/5 min

Time

front of them. All participants
heard two conditions, with the

random sequence presented first (gray). Group 1 heard the random condition followed by the more musical sequence, Group 2 heard the random
condition followed by the less musical sequence, and the Control Group heard the random sequence during both conditions. After hearing the
third block of the patterned condition, participants in Groups 1 and 2 were given a two-alternative forced-choice quiz that tested their ability to
distinguish the doublets from foils, two-tone combinations that never occurred in the patterned sequence.

Working Memory subtests; Table 1). Groups were also
matched on their musical abilities and their ability to
implicitly remember novel melodies that adhered to the
rules of Western tonal music (Table 2).

Musical abilities were tested using the Montreal Battery
for the Evaluation of Amusia (MBEA; Peretz, Champod, &
Hyde, 2003). We administered the three melodic subtests
(interval, contour, scale) of the MBEA followed by the
melody memory subtest. The first three subtests require
the participants to compare two melodies and make
“same” or “different” judgments, with three different tonal
dimensions being tested on each subtest (interval, con-

tour, scale). These three subtests employ the same pool
of 30 novel musical phrases that were composed accord-
ing to Western musical standards. On the final subtest, the
participants are tested on how well they remember the
melodies presented in the earlier subtests. Fifteen of
the 30 melodies are presented, in addition to 15 new foils.
The participants are presented one melody per trial, and
they must indicate whether they recognize the melody
(yes/no judgment). The participants are not instructed
ahead of time that they would need to remember the mel-
odies presented on the first three subtests, and as such,
this test serves as an implicit memory test.

Figure 2. Snapshots of the
pseudorandom (gray) and
patterned (red = more musical,

blue = less musical) sequences random
are depicted here to illustrate

their defining characteristics. Each patterned
sequence represents 8.17 sec more musical
of the respective condition. The

sequences were composed of patterned

less musical

eight 333-msec complex tones,

DADAGFDCFCFGADAECFGATFC
—

ECFFDGECDGFFGADGECGADG
—

i
ADGG'FEADFEGGCFFEADCFFE
— —

Sequences

333 msec

371.43 msec

with each mapping on to a
different musical note. Within

the sequences, the global statistics of the individual sounds were matched, such that each tone played with a 12.5% probability, while varying the
local context of the sound (Table 2). In the random sequence, no tone was repeated in immediate succession, but the sequence otherwise had no
predictable structure. The two patterned sequences were created from a set of four two-note patterns (more musical = EC, F #F, DG, G*A; less musical =
FE, CF#, GG#, AD) that were concatenated pseudorandomly without conspicuous pattern breaks. Each pattern occurred with a probability of 25%
within the sequence but no pattern was played twice in a row (Table 2 and Audio Clips 1-2). For illustrative purposes, the patterns are plotted in

alternating shades of light and dark ink.
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Table 2. Musical History and Abilities

Music  Age Lessons Melodic Interval Melodic Contour Melodic Scale Memory for

Lessons Began Differentiation  Differentiation  Differentiation — Melodies
Group Condition 1 Condition 2 (years) (years) (% Correct) (% Correct) (% Correct) (% Correct)
1 R P: More musical 5.17 (4.58) 0.94 (5.25)  86.20 (10.00) 86.92 (8.46) 89.61 (7.63) 92.22 (5.83)
2 R P: Less musical 6.17 (5.46) 6.28 (4.18)  83.15 (12.88) 87.63 (11.67) 89.07 (7.91) 92.96 (7.31)
Control R R 7.56 (5.00) 9.32 (3.02) 84.77 (15.87) 83.87 (7.90) 88.35 (8.36) 92.41 (9.82)
F 0.997 2.424 0.242 0.798 0.112 0.044
b 376 .099 .786 456 894 957

Groups were also matched on the number of years of music lessons and performed equivalently on basic measures of musical ability and implicit
memory for melodies that adhered to the rules of Western tonal music (Peretz et al., 2003). There was a trend for the three groups to differ
with respect to the age that musical training began, owing to the slightly later average start age for the control group. However, it should be noted
that the two experimental groups (Groups 1 and 2) were matched on this variable, #(34) = 0.429, p = .671. Means are reported, with standard
deviations in parentheses. The F and p statistics of the one-way ANOVA are reported at the bottom of the table. R = pseudorandom stimulus

sequence; P = patterned stimulus sequence.

It should be noted that of the 54 participants, 36 were
participants in an earlier study (Skoe et al., 2013) and
they constitute Group 1 and the Control Group in this
analysis. An additional group of 18 participants, whose
data were not included in the 2013 paper, represent
Group 2. To ensure that the three groups were as well
matched as possible, 10 of the participants presented in the
2013 paper have been excluded from the present analysis.

Stimuli

The sound sequences were formed from eight triangle
waves. The 333-msec complex tones were created in
Adobe Audition (Adobe System Corp., San Jose, CA) and
contained only odd harmonics of the fundamental fre-
quencies (F) and each successive harmonic diminished
in amplitude by 1/H*, where H = harmonic number. The
Fy of the individual complex tones were 262, 294, 330,
350, 370, 393, 416, and 440 Hz, with each tone mapping
onto a specific musical note (C4, Dy, E4, Fy, F#4, Gy, G#4,
and Ay, respectively). Triangle waves were used because
they have a natural sound quality, with a timbre akin to a
clarinet. To ensure smooth sound transitions, a 50-msec
ramp (triangular window) was applied to the onset and
offset of the stimulus in the MATLAB programming envi-
ronment (The Mathworks, Natnick, NJ).

Sequence Generation

Tone sequences were generated with algorithms in
MATLAB, resulting in one random sequence and two dis-
tinct patterned sequences. Each sequence was presented
three times (~5 min/sequence), with intervening breaks
between blocks (Figure 1).

In the patterned and random sequences, each tone had
an equal probability of occurrence (1 of 8, or 12.5%) but
the local neighborhood, including the first-order transi-
tional probabilities (TPs), were different (Table 3). First-
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order TPs are defined as the probability of two particular
sounds being successive within the sequence. To create
the random sequence, the eight tones were sorted pseudo-
randomly within the sequence with the proviso that no
tone was repeated in immediate succession. This led to a
sequence in which the TPs were low, ranging from 6.72%
to 20.83%. In the patterned sequences, the TPs were more
constrained, being 0%, ~33%, or 100%.

Before creating the patterned sequences, the eight
tones were grouped into four doublets (two-tone clusters;
Figure 2). To produce the two distinct patterned sequences,
two sets of doublets were used: EC, F#F, DG, G*A or FE,
CF#, GG#, AD. By definition, the two tones forming each
doublet have a (forward) TP of 100%. For example, if E is
presented, there is a 100% probability that the next tone
will be C. If C is presented, the next tone will either be
F#, D, or G#, but never F, G, or A. The sequence formed
from EC, F#F, DG, G”A was perceived to be more musical
than the sequence formed from FE, CF#, GG#, AD (see
below). The doublets were counterbalanced between the
two sets, such that the tones forming the start of the doublet
in one set formed the end of the doublet in the other (e.g.,
E,F#,D,G# occurred as the first note in the doublets in
Set 1 and as the second note in Set 2). As a first step to
creating the patterned sequences, a deep structure was
formed by stringing together the numbers 14 into a pseudo-
randomly ordered sequence with each number serving as
a placeholder for a tone pair (i.e., doublet). For each block,
we aimed to collect 100 “clean” (i.e., artifact free) re-
sponses to each tone. Because each of the eight tones
was a member of only one doublet, by controlling for the
number of doublets we necessarily controlled the number
of trials. To allow for a small percentage of myogenic arti-
facts, an extra 20 trials per doublet were buffered into the
sequence. Thus, within the sequence, each number appeared
120 times with no immediate repeats (e.g., 1-2-3-1-3-24...).
The individual doublets were then mapped onto the deep
structure, with numbers 1 through 4 being replaced with
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Table 3. First-order TPs for the (A) Random and (B, C) Patterned Sequences

A. Random Condition

...probability it is followed by

C
Given... C
D 20.83
E 13.22
F 17.80
F# 16.24
G 10.92
G# 11.90
A 6.72

B. More Musical Condition

D
11.11

19.83
13.56

7.69
14.29
17.46
15.97

E
17.95
15.00

12.71
19.66
16.81
10.32

9.24

...probability it is followed by

C

Given... C

D

E 100.00

F

F#

G

G#

A

C. Less Musical Condition

D
34.40

31.09

32.76

E

34.45

35.59

35.34

...probability it is followed by

C

Given... C

D 32.00

E 29.66

F

F#

G

G# 34.45

A

D

100.00

E

100.00

11.97
11.67
13.22

13.68
10.08
14.29
23.53

100.00

34.40

32.76

31.09

F#
11.11
15.83
14.05
11.02

10.08

20.63
12.61

F#
33.60

33.90

31.90

F#
100.00

20.51
14.30
11.57
12.71
11.11

13.49
17.65

100.00

33.60
33.90

31.90

G#
18.80
13.33
8.26
15.25
15.38
21.01

14.29

G#
32.00

34.45

29.66

G#

100.00

8.55
10.83
19.83
16.10
15.38
16.81
11.90

100.00

35.59

35.34

34.45

First-order TPs, defined as the probability of two sounds being successive within the sequence, were calculated post hoc after the sequences were
generated. (A) For the pseudorandom sequence, all sound combinations occur, except that no sound follows itself. Because the sequences were
created with this “sample without replacement approach,” the average TP is roughly equal to 14.3% or 1/7. In addition, because the sequence
was created with a pseudorandom number generator and the sequence was finite, the probabilities are matched but not identical. For the musical
(B) and less musical (C) patterned sequences, composed of four recurring doublets, the first-order TPs are more constrained such that only certain

sound combinations occur. Doublets are defined as sound combinations with a TP of 100% (bold).

Skoe et al.

129



EC, F’F, DG, G*A (respectively) for the more musical
sequence or AD, G*G, FE, CF* (respectively) for the less
musical sequence. Thus, EC of the more musical sequence
occurred in the same positions within the string as AD of
the less musical sequence, and so on. Consequently, the
two patterned sequences had the same deep structure and
were formed from the same eight tones; the only character-
istic that distinguished them was the particular notes that
could occur in succession, with each sequence being defined
by a different set of doublets (Tables 3 and 4). The sequences
were created with no overt breaks or grouping cues to
demarcate doublet boundaries; doublets could only be
deduced from the continuous tonal sequence by tracking
the statistical dependencies between sounds. Participants
were tested on how well they learned the TPs of the
sequence by asking them to discriminate target doublets
from foils (see Behavioral Assessment of Learning section
below; Audio Clips 1 and 2).

Sequence Musicality and Learnability

Seven highly trained musicians judged the musicality of
the patterned sequences according to the rules of Western
music. All rated the sequence composed of EC, F’F, DG,
G™A as being more musical than the other sequence com-
posed of AD, G#G, FE, CF#. The stronger musicality was
driven by the specific musical intervals contained within
the sequence and how the doublets interacted with each
other within the constrained local neighborhood of each
sound in the sound sequence. In Western music, smaller
intervals are more prevalent than larger ones (Vos &
Troost, 1989) and the more musical sequence had on aver-
age smaller intervals than the one perceived to be less
musical (Table 4). Both sequences contained two variants
of the Minor 2nd, which has a one semitone separation
between notes (more musical sequence: F#F, G#A; less
musical sequence: FE, GG#). For the more musical se-
quence, the other two doublets in the set formed a Major
3rd (EC, four semitones) or Perfect 4th (DG, five semi-

tones). The interaction between EC and DG further pro-
moted the stronger musicality. In the more musical
sequence, the E tone was followed by C 100% of the time,
and every third time that EC was presented, it was pre-
ceded by the doublet DG (Figure 2). D-G and E-C combine
to form a cadence, a fundamental building block of music
that occupies a prominent and conspicuous status in many
genres of music from Baroque to Western pop music.
Cadences act as a type of musical punctuation mark that
indicates the end of a phrase or musical section and the
presence of this cadence likely contributed to the musical
nature of that sequence. In contrast, for the sequence that
was judged to be less musical, the order of the tones did
not imply a particular scale or diatonic harmony. Thus,
whereas both sequences were atonal and composed of
the same eight notes, the “more” musical one bore greater
resemblance to the C major tonality, and hence, it sounded
more musical.

On the basis of pilot testing (7 = 27), the TPs of the
“more musical” sequence were found to be easier to
learn (independent ¢ tests: £(26) = 3.595, p = .001) with
memory recall for the doublets averaging 62.95% relative
to 46.43% for the other sequence. To rule out potential
errors in the stimulus or test design, we administered the
less musical condition to a highly trained musician with
perfect pitch. For this expert listener, memory recall was
100%.

Electrophysiological Procedures
Stimulus Presentation

Sounds were delivered binaurally using Stim2 (Gentask
module; Compumedics, Inc., Charlotte, NC) at 70 dB
SPL via ER-3A ear insert tubephones (Etymotic Labora-
tories, Elk Grove Village, IL) with an intertone interval
of 38.43 msec. Each sequence was presented three times
(approximately 5 min/sequence), with intervening breaks
between blocks (Figure 1). After the participant reached

Table 4. The Patterned Sequences Were Composed of Four Two-tone Patterns

Patterned Sequence Doublet Semitone Change, Direction Musical Interval

More musical EC 4, descending Major 3rd
F#F 1, descending Minor 2nd
DG 5, ascending Perfect 4th
G#A 1, ascending Minor 2nd

Less Musical CF# 6, ascending Tritone
FE 1, descending Minor 2nd
GG# 1, ascending Minor 2nd
AD 7, descending Perfect fifth

The sequence perceived to be more musical was composed of EC, F#F, DG, and G#A and the less musical sequence was composed of FE, CF#,
GG#, and AD. For each doublet, the number of semitones separating the two notes and the musical interval that it created are reported.
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the requisite number of artifact-free trials per block (100/tone;
see below), the stimulus sequence was manually stopped,
and the participant was given a short break.

Recording and Data Processing Procedure

cABRs were recorded with an analog-to-digital rate of
20 kHz using scalp electrodes and a PC-based hardware/
software system (SynAmps 2 amplifier, Neuroscan Acquire,
Compumedics, Inc.). Three Ag-AgCl electrodes were
placed on the scalp in a vertical montage (Hood, 1998;
the active electrode at the midline [Cz], reference elec-
trode on the right earlobe, and the ground electrode on
the forehead). Contact impedance was kept at <5 kQ.
Recordings were made in continuous (nonaveraged) mode
with an online filter of 0.5-3000 Hz and then were pro-
cessed offline in Neuroscan Edit by filtering from 30 to
2000 Hz (12 dB/octave) and epoching each note separately
with a window of —10 to 350 msec (Neuroscan Edit). After
baseline correcting each response to the mean voltage of
the noise floor (—10 to 0 msec), trials containing myogenic
artifact were discarded, using an automated procedure that
flagged trials with activity exceeding the range of *35 V.
For each of the eight tones, 300 artifact-free trials were
averaged for each participant, discarding any additional
trials that might have been collected. See Figure 3 for
an illustration of the time-domain averages for Group 1
across the more musical and pseudorandom condition.

It should be noted that the number of tones that each
participant heard was greater than 300, with the average
being 321.43 (collapsing across tones, conditions, and
groups). An average of 7.14% of trials was discarded
because of myogenic artifact or in some cases, because
the stimulus was not stopped immediately after reaching
300 artifact-free trials. However, in the large majority of
the cases, the participants reached the target number
of artifact-free trials (100 per tone per block) before
reaching the end of the sequence. Importantly, the num-
ber of trials that the participants heard did not differ across
groups. For Sequence 1, the average number of trials/tones
presented across the three blocks was 319.97 = 12.17,
315.60 = 10.74, 325.30 = 20.50 for the three groups, re-
spectively. For Sequence 2, the corresponding values were
322.71 = 6.51, 321.31 + 9.42, 323.65 = 12.80. The total
number of tones presented did not differ between groups,
F(2,51) = 1.413, p = .253, between sequences, F(1,51) =
1.453, p = .234, nor was there an interaction between the
sequence and group, F(1, 51) = 1.297, p = .282.

The phase-locked component (55-278 msec) of each
CABR subaverage (Figure 3) was analyzed by applying a
fast Fourier transform with zero padding (Skoe & Kraus,
2010a; Moushegian, Rupert, & Stillman, 1973), with the
resultant response spectrum having a 1-Hz resolution.
This 55-278 msec time window was chosen because it
reflects when the stimulus amplitude is unchanging
(50-273 msec), after accounting for the roughly 5-msec
delay between when the stimulus enters the ear canal
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and when the inferior colliculus, the primary generator
of the cABR, responds (Chandrasekaran & Kraus, 2010;
Hall, 2007). See Figure 4 for an illustration of the fre-
quency domain averages for Group 1 across the more
musical and pseudorandom condition. For each tone,
the amplitude of the response to the Fy was obtained
for each participant by finding the peak in the response
spectrum nearest the F, of the stimulus (262, 294, 330,
350, 370, 393, 416, and 440 Hz, respectively; Skoe &
Kraus, 2010b). Across all participants, the frequency of
the peak was on average <1 Hz from the target. More-
over, none of the peaks that were extracted exceeded
+10 Hz of the target frequency.

Experimental Instructions and Setting

At the outset of each block, all participants heard the
following prerecorded instructions: “You will now hear
a series of tones. Listen carefully to the sounds because
later on you will be asked some questions to gauge
how well you remembered the sounds. Please keep your
eyes open and focus your gaze on the image on the
screen. Try to sit as relaxed as possible. This section will
last 15 minutes—you will get a break every five minutes
or so.” The instructions and experimental setting were
identical for all three groups to minimize the potential
yet unknown impact that different instructions might have
on the cABR. To facilitate alertness while minimizing

muscle movement, participants were shown a slideshow
of 60 nature photos. The 1280 X 857 pixel images were
played from standard DVD player and projected into the
testing chamber onto a large projector screen in front of
the participant. Each photo was presented for 1 min with
a 4-sec fade between each photo. Because statistical learn-
ing can be interrupted by a concurrent task that is attention
demanding (Toro, Sinnett, & Soto-Faraco, 2005), par-
ticipants did not perform a photo-related task nor other
secondary task.

Statistical Analyses

For the neural analyses, the primary dependent variable
was the cABR to the F, of each of the eight tones. To
determine whether the F, response differed between
conditions and groups, a 3 X 2 X 8 mixed-model repeated-
measures ANOVA was used, with a between-participant
factor of Group (three levels: Group 1 [more musical se-
quence], Group 2 [less musical sequence], Control Group
[repeat random]), a within-participant factor of Condition
(two levels: random or patterned) and a within-participant
factor of Tone (eight levels: one for each tone). Bonferroni-
corrected two-tailed post hoc comparisons are reported.
For all participants, Condition 1 refers to the first sequence,
which was the random sequence for all groups. Condition 2
refers to the second sequence, which differed among
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groups (Group 1: the more musical sequence, Group 2: the
less musical sequence, Control Group: a repeat of the ran-
dom sequence).

Behavioral Assessment of Learning

Immediately after the third block of the patterned se-
quence, Group 1 and Group 2 participants were tested
on how well they learned the individual doublets com-
prising the (respective) patterned sequence. In a two-
alternative forced-choice test, each doublet was paired
with a foil pair, two sounds that were never played
together in the patterned sequence (Abla, Katahira, &
Okanoya, 2008; Saffran et al., 1999). Participants were
asked to choose the more familiar sounding doublet in
the pair by pressing either the “A” or “B” button on a
response box, corresponding to the presentation order
in the forced-choice task. Each doublet was paired once
with one of four foils, creating 16 comparisons. The
doublets forming the more musical sequence were
inverted to create the foils for the other sequence, and
vice versa. Thus, the foils for the more musical sequence
were EF, F#C, G#G, and DA, and for the less musical
sequence, they were CE, FF#, GD, and AG#. The sounds
composing the foils never occurred in immediate succes-
sion within the respective sequence and therefore had
(forward) TPs of 0. Scores were converted to percent
correct, with 50% representing chance performance.

The control group was tested on a tone memory quiz
using a two-alternative forced-choice paradigm. For this
test, each of the eight notes was paired with a “novel”
tone that was a valid musical note but did not appear
in the random sequence. These novel tones were As,
A#3, B, C#4, D”, A#, B*, and Cs. Across 64 trials, par-
ticipants were instructed to choose the more familiar
sounding tone using a response box. With this test, we
aimed to gauge how well the individual tones were
tracked. Scores were converted to percent correct, with
50% representing chance performance.

RESULTS
Behavioral Results of Tone Memory

For the control group, performance on the tone memory
task averaged 62.59% (range = 41.19-87.50%), which is
statistically higher than chance (one-sample ¢ test, £(17) =
4201, p = .001).

Behavioral Index of Statistical Learning

Consistent with our predictions and pilot data, the under-
lying structure of the less musical sequence was more
difficult to learn than the more musical sequence (inde-
pendent samples: ¢ test, £(34) = 2.456, p = .030). For the
more musical sequence (Group 1), 15 of the 18 (83%)
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Figure 5. Behavioral index of statistical learning. Percent correct
scores are plotted for each participant, along with the group average
(mean = 1 SEM; red = more musical condition, blue = less musical
condition). Fifty percent is chance performance. *p < .05.

participants performed above chance (i.e., 50%) and
average performance was 61.11% (range = 31.25—
87.50%), which is statistically higher than chance (one-
sample ¢ test, £(17) = 3.978, p = .001). In contrast, for the
less musical sequence (Group 2), the average score was
52.78% (range = 25-68.75%), which was not statistically
different from chance, #(17) = 1.141, p = .270 (Figure 5).
For this less musical sequence, 8 of the 18 participants (44%)
performed above chance.

Within the more musical sequence the four doublets
were not learned equally, F(15, 3) = 5.587, p = .009.
F#F and G#A, both minor second intervals (Table 4), had
the highest recognition with average scores of 62.50 *
23.09% and 79.17 + 21.44%, both of which fell above
chance, 1(17) = 2.30, p = .035; 1(17) = 5.772, p < .0001,
respectively. This is in contrast to EC and DG for which
the scores were 48.6 = 31.47% and 54.18 = 19.65% and
did not exceed chance, #(17) = —0.187, p = .854; t(17) =
0.900, p < .381, respectively. For the less musical condition,
performance was more closely matched across doublets,
F(15,3) = 0.603, p = .623, with the average scores being
54.17 £ 23.09, 55.56 = 26.51,54.17 = 23.089, and 47.22 =
18.960 for AD, GG#, CF#, and FE, respectively, with none
of the doublets falling above chance performance (p > .30
all cases).

Brainstem Index of Statistical Learning

We also observed different neural effects for the three
groups, as evidenced by a significant Group X Condition
interaction, F(2, 51) = 5.659, p = .006 (Figure 6). The
three-way interaction between Group, Condition, and Note
was trending, F(14, 357) = 1.666, p = .088 (Greenhouse—
Geisser correction applied). Except for a main effect of
Note, F(7, 357) = 31.328, p < .0001, none of the main
effects nor the other interactions were significant (main
effect of Condition: F(1, 51) = 2.350, p = .131; main effect
of Group: F(2, 51) = 0.020, p = .980; Condition X Note
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interaction: F(1, 257) = 1.491, p = .169; Group X Note
interaction: F(1, 14) = 0.426, p = .9606).

Each component of the Group X Condition inter-
action was then explored using post hoc comparisons
(pairwise Student’s ¢ tests). For the group receiving the
more musical condition (Group 1), there was a main
effect of condition, with the cABR being smaller in the
patterned condition relative to the random one, #(17) =
3.355, p = .004. Going from the lowest to highest
tones, for Group 1 the average decrease in amplitude
was 0.006 = 0.012, 0.008 = 0.014, 0.006 = 0.014, 0.005 =
0.008, 0.005 = 0.009, 0.001 =+ 0.009, 0.001 =+ 0.006, and
0.002 = 0.005 for C, D, E, F, F#, G, G#, and A, respectively.
However, owing to the fact that the three-way inter-
action (Condition X Note X Group) was not significant,
Condition X Note statistical comparisons were not made
for this group.

For Group 2, who received the less musical condition,
there was no main effect of Condition, #(17) = —1.370,
p = .189. Likewise in the Control Group, there was no

cating that the response to the random condition did
not change with repeated exposure in the Control Group.
Importantly, cABRs recorded to the random condition did
not differ among the three groups, F(2, 51) = 0.041, p =
.959, which is not surprising given that the groups were
matched on a variety of parameters known to affect the
CABR (e.g., age, hearing thresholds, musical training).
Taken together, this suggests that the outcomes are not
driven by inherent group differences but instead reflect
stimulus differences (Figure 06).

Correlations among Variables

As a secondary analysis, we performed Pearson’s correla-
tions between the behavioral data and cABR data. In addi-
tion, because musical training is known to affect cABRs and
statistical learning (Strait & Kraus, 2014; Shook, Marian,
Bartolotti, & Schroeder, 2013; Kraus & Chandrasekaran,
2010), we also examined how the behavioral and neural
data reflected the number of years of musical training. For

main effect of Condition, #(17) = 1.207, p = .244, indi- the purposes of performing the correlations, a composite
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Figure 6. Brainstem index of statistical learning. The brainstem’s sensitivity to auditory patterns emerged only for the more musical condition
for which learning performance exceeded chance (see Figure 5). Group-averaged cABRs are overlaid for each of the eight complex tones in the
random (black) and (A) more musical patterned condition (red), (B) less musical patterned condition (blue), and (C) control condition (gray). Note
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neural measure was calculated that reflects the percent
change between the random and patterned conditions, col-
lapsing the cABR across all tones. See Skoe et al. (2013) for
details. A negative percent change indicates that the re-
sponse was smaller (i.e., adapted in the patterned condi-
tion) relative to the pseudorandom one.

Relationships between Musical Training and
Behavioral Scores

For Group 1, there was a significant correlation between
the behavioral score and years of musical training (r =
0.547, p = 0.019), with the effect being reduced for
Group 2 (r = 0.467, p = .051). Among the musically
trained individuals (>1 year) in Group 2, performance
(n = 14) was only 54.46 = 8.28%, which is statistically
lower than Group 1 where the musically trained members
(n = 10) averaged 63.94 + 10.25% correct, £(25) =
—2.651, p = .014, a score that trends toward being higher
than chance performance, #(13) = 2.016, p = .065.

Relationships between Musical Training and
Neural Data

For Group 1 (the group hearing the more musical condi-
tion), the correlation between the amount of musical
training and the cABR data (i.e., percentage change
between conditions) was statistically significant (r =
0.602, p = .011), however, only after removing an outlier
who fell more than 2 standard deviations outside the
group mean on the percent change cABR measure.
Performing the same analysis on Group 2 did not yield
a significant result (» = —0.151, p = .550).

Relationships between Bebavioral Scores and
Neural Data

Within Group 1, there was also a significant correlation
between the behavioral score and the cABR data (r =
0.493, p = .044, outlier excluded). The correlation, it
should be noted, is lower than what was reported in Skoe
et al. (2013), which included an additional 10 participants
beyond those reported here.

DISCUSSION

The human auditory system is capable of performing
statistical computations on an incoming stimulus stream,
with the byproduct of these computations being observed
in cABR scalp recordings (Skoe et al., 2013). In the
current study, we extend this investigation by asking
whether prior knowledge—beyond the statistics of the
current stimulus stream—affects the indexing of stimulus
probability. We tested two competing hypotheses for
how the auditory brainstem indexes statistical relationships,

which we refer to as the Frequentist and Bayesian Brain-
stem Hypotheses. To do so, we recorded cABRs to two
novel sound sequences each containing four recurring
sound doublets. One sequence sounded more musical
(i.e., less novel) than the other as a result of how the
doublets combined and the musical intervals that were
formed by the doublets. For the more musical sequence,
we found that the TPs were easier to learn after 15 min
of exposure and that the cABR to that sequence differed
from a baseline pseudorandom sequence, in which there
was no underlying organization to the sounds. However,
for the less musical condition, the TPs were harder to
learn, and the cABR did not differ from baseline. In other
words, when patterns were not indexed in the cABR, be-
havioral learning also did not occur.

If the adult brainstem is myopic, such that it only has
access to current statistics, then under the Frequentist
Brainstem Hypothesis the two patterned sequences
should have produced similar neurophysiologic effects.
Although the sequences differed in which tones co-
occurred, the underlying statistical deep structures and
the distribution of TPs were matched, suggesting that
the computational demands and, therefore, the neural
mechanisms should not differ. Instead we found differ-
ences in how the two sequences were processed in the
auditory brainstem: Unlike the more musical condition,
the cABR to the less musical condition was not different
from the baseline condition where the tones were pre-
sented in random order. This combination of results
leads us to reject the Frequentist hypothesis as a possible
mechanism for explaining our findings.

So then, what accounts for the differences we observed
between the two patterned conditions? Participant-specific
factors are an important consideration here because (1)
musical training and other extensive auditory experiences can
affect the cABR (Ruggles, Bharadwaj, & Shinn-Cunningham,
2012; Skoe & Kraus, 2012; Hornickel, Skoe, Nicol, Zecker,
& Kraus, 2009; Wong, Skoe, Russo, Dees, & Kraus, 2007,
reviewed in Kraus & Chandrasekaran, 2010) and (2) we
used an across-participant design to test the two patterned
conditions. However, group differences cannot be the
sole explanation because the two experimental groups
were matched demographically, including on age, musical
training history (age start, years of training), hearing
thresholds, and intelligence (Tables 1 and 2). Groups
were also matched on auditory working memory and
implicit memory for melodies that adhered to the rules
of Western tonal music (Peretz et al., 2003), suggesting
that differences in auditory memory were not driving
our results. We also assume that all participants have
had sufficient—and more or less equivalent—exposure
to music over their lifetimes to have internalized the
prominent features of Western music.

Given that idiosyncratic dissimilarities among partici-
pants are believed to play only a minimal role in our study’s
outcomes, we speculate that the differences reported for
the two patterned sequences may reflect a fundamental

Skoe et al. 135



property of the auditory brainstem and how it indexes
statistical information. Specifically, we argue that our find-
ings provide evidence that the human adult auditory
system operates as a type of Bayesian modeler of the
auditory environment that factors in previous encounters
with sound when indexing probability estimates for in-
coming sound streams (Fiorillo, 2008; Mamassian et al.,
2002). Within this Bayesian framework, the more the in-
coming statistics conform to the statistics of the long-term
history of auditory input (i.e., the collective auditory
experience of the individual), the more sensitive the brain-
stem is predicted to be to those statistics.

Similar phenomena have been reported in the behav-
ioral literature on statistical learning, indicating that sta-
tistical learning is affected by prior knowledge and
experience. In infants it has been shown that recently
acquired knowledge biases the discovery of word bound-
aries in novel linguistic streams and that the expectations
arising from this knowledge impede learning when the
statistics conflict (Lew-Williams & Saffran, 2012). In
adults, learning a novel language and subsequent rec-
ognition of novel words are affected by the grammatical
organization of one’s native language (Toro, Pons, Bion,
& Sebastian-Gallés, 2011; Finn & Hudson Kam, 2008), sug-
gesting that ingrained knowledge constrains how incoming
sounds are grouped.

Expectation also biases how tonal sequences are pro-
cessed. Meyer has theorized that, when listening to a
novel piece of music, we continuously update our expec-
tations based on our familiarity with musical norms and
how closely the piece matches a particular musical style
or norm (Meyer, 1994). Tonal and rhythmic patterns
can also drive expectations for future input (Winkler,
Denham, & Nelken, 2009; Large & Jones, 1999), and this
drive can be so strong that the brain will “fill in” an
expected sound when it is omitted (Iversen, Repp, &
Patel, 2009; Large & Snyder, 2009; Janata, 2001). In our
study, the strong bias for certain sound combinations in
Western music may have interfered with how the TPs of
the less musical sequence were learned. This may account
for why having previous musical training did not yield
much if any advantage on either the behavioral or neuro-
physiological indices of statistical learning for the less
musical condition. One possible interpretation of our
findings is that interference from musical expectations
changed the course of learning by narrowing what consti-
tuted a valid sound combination in this novel stream
(Lew-Williams & Saffran, 2012), causing the brainstem to
appear as if it were “overlooking” the patterns and result-
ing in the sequence being processed as if it contained no
or minimal structure. As evidence of this, we found that
CABRs to the less musical condition did not differ from
the random condition.

In contrast, the more musical condition contained a
musical sequence (D-G-E-C) known as a cadence, formed
from the concatenation of two doublets (DG and EC).
Cadences are common phrase endings in Western music,
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which in addition to increasing the musicality of the
sequence may have facilitated learning the novel sound
sequence’s statistics. Although our participants may not
have been explicitly aware of the rules governing the
structure of music, previous work suggests that musical
knowledge is gained implicitly, as seen by sensitivity to
musical rules in both behavioral and neurophysiological
assessments (Marmel, Parbery-Clark, et al., 2011; Marmel,
Perrin, & Tillmann, 2011; Loui et al., 2010; Koelsch &
Jentschke, 2008). Given this strong sensitivity to previ-
ously learned musical structure, we argue that partici-
pants were likely deriving statistical probabilities within
the continuous sound sequence based on both present
context (i.e., statistical structure of the incoming novel
sound stream) and past learning of statistically probable
musical combinations (Kelly, Johnson, Delgutte, & Cariani,
1990), resulting in greater neural and behavioral sensitivity
to the more musical condition. Because the cadence
spanned across doublets, the listeners may have treated
this four-tone sequence as a single, nondecomposable unit
and used this salient, repeating unit to facilitate the ex-
traction of the other two doublets (F#F, G#A). This may
help to explain why listeners performed poorly on the
forced-choice behavioral test when presented DG and EC
as isolated doublets, in addition to why relatively higher
performance was observed for F#F and G#A. Thus, the
behavioral paradigm we administered may not be ade-
quately tapping into the type of statistical information
that the listeners were extracting from the novel sequences.
In addition, because we do not have a baseline measure
of how naive adult listeners respond to our behavioral tests
before exposure to these novel sequences, we cannot fully
dissociate the effects of online learning and past learning.
This suggests the need for more sophisticated behavioral
testing in future work.

Frequentist versus Bayesian, or Is It Frequentist
then Bayesian?

We designed this study as a way of adjudicating between
two competing hypotheses and their ability to account
for how the auditory brainstem indexes statistical infor-
mation within novel auditory input. Although our data
favor the Bayesian Brainstem Hypothesis, they do not
rule out the possibility that the auditory brainstem oper-
ates in a more Frequentist manner under other conditions
or points in life. Our data suggest that the processes of
indexing sound statistics in the auditory brainstem are
calibrated overtime based on sound exposure, leading us
to theorize that statistical learning processes have Fre-
quentist properties initially and then transition to having
more Bayesian properties following a period of restructur-
ing based on exposure to one’s “native” environment. In
the absence of experience with Western music, we would
expect the two patterned sequences (more musical, less
musical) to be treated identically. That is, in musically naive
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listeners, such as infants and experimental animals, we
expect to observe indications of statistical learning in the
CABR to both of the patterned sequences used in this
study, not just to the more musical sequence. However,
as experience with the statistics of one’s environment
accrues, we predict a shift in processing will emerge. From
a neurophysiological standpoint, this experience-dependent
shift may either (1) optimize the detection of sounds or
sound combinations that are familiar to the individual
and/or (2) reduce sensitivity to sound combinations that
are unfamiliar/less familiar, with the fullest manifestation
of this being no neural indexing of statistical information
when the statistics are sufficiently novel (as we report here
for the less musical condition). Future studies are planned
to test whether this shift necessitates long-term exposure
or whether short-term exposure might suffice. In addition,
we are interested in the question of whether the conditions
and thresholds for inducing this putative shift are different
in adults compared with children.

Evidence that the Brainstem Is Not Merely
Indexing Familiarity

Although we theorize that the brainstem has access to
prior experience and that this can bias its response to
patterns, we posit that the auditory brainstem is doing
more than just responding to what is familiar. First,
although the more musical sequence contained common
and therefore familiar musical motifs, the sequence itself
was novel. Second, because the cadence was embedded
within the sequence and not demarcated by overt cues, it
could only be identified by tracking the statistical regu-
larities within the sequence and making online compari-
sons between sound combinations of varying length and
known musical templates. Third, the brainstem’s sensitiv-
ity patterns emerged as a tonic change from the baseline
condition (i.e., a general decrease across the tones in the
sequence), suggesting that the brainstem indexes the
superordinate structure of the sequence (i.e., the pres-
ence of patterns). However, we admit that our ability to
observe more fine-grained statistical dimensions may be
limited by the use of doublets instead of triplets (or even
more complex) structure as well as our recording tech-
niques, including the relatively small number of trials
compared with typical cCABR measurements (Skoe &
Kraus, 2010a).

Brainstem Correlates of Statistical Learning Reflect
Local and Top-Down Mechanisms

If the auditory brainstem has access to prior knowledge
governing the plausibility of certain sound combinations
in the environment, how does it acquire this access? We
propose that local mechanisms within the brainstem
interact with exogenous mechanisms (i.e., not local to
the brainstem) to mediate pattern learning and modulate

subcortical physiology (Skoe et al., 2013; Kraus &
Chandrasekaran, 2010; Skoe & Kraus, 2010b; Suga,
Gao, Zhang, Ma, & Olsen, 2000; Yan & Suga, 1998).
Similar to what has been theorized by Fiorillo (2008)
and Weinberger (2004), auditory memory may be built
into the local circuitry of the brainstem with networks
being formed and re-formed to reflect ongoing experi-
ences. Such an idea is also consistent with Hebbian princi-
ples of learning, in which temporally coherent events (e.g.,
sounds in a pattern) are grouped into a common neural
circuit, creating a memory trace that alters how the neurons
respond to future input (Yu, Stein, & Rowland, 2009;
Tzounopoulos, Rubio, Keen, & Trussell, 2007; Drew &
Abbott, 2006; Tallal, 2004; Yao & Dan, 2001). Thus, the
more musical patterned sequence may have activated a
well-formed subcortical circuit for familiar musical motifs,
leading to stimulus-specific adaptation (SSA) to the more
familiarly sounding sequence that emerged as a reduction
in cABR amplitude between the more musical condition
and the random, baseline sequence. Another, not mutually
exclusive possibility, is that the brainstem is granted access
to prior information from higher sensory and cognitive
centers and that this information is rapidly delivered to sub-
cortical centers via top—down routes such as the cortico-
fugal pathway (Kraus & Nicol, 2014; Bajo & King, 2012;
Luo, Wang, Kashani, & Yan, 2008; Nahum, Nelken, &
Ahissar, 2008; Zhou & Jen, 2000). Consistent with this idea,
Nelken and Ulanovsky (2007) have theorized that SSA
emerges in the auditory cortex and is inherited by lower
subcortical centers (Nelken & Ulanovsky, 2007), although
evidence in favor of this is currently mixed (Antunes &
Malmierca, 2011; Bauerle, von der Behrens, Kossl, & Gaese,
2011).

Comparisons with Previous Findings

When examining the data on a group level, we observe a
form of SSA that is specific to the more musical sequence.
Although this finding is consistent with observations from
animal models in which commonly occurring sound com-
binations leads to SSA (Malmierca et al., 2009; Perez-
Gonzalez et al., 2005), it is seemingly at odds with recent
reports from our group and others showing that sta-
tistically predictable stimulus conditions give rise to
enhanced cABRs in humans (Skoe, et al., 2014; Gnanateja
et al., 2013; Slabu et al., 2012; Parbery-Clark et al., 2011,
Skoe & Kraus, 2010b; Chandrasekaran et al., 2009). This
diversity of findings warrants discussion. First, we wish to
point out that in the current study and its recent pre-
decessor (Skoe et al., 2013), we used stimuli that, although
statistically predictable, were more complex than the pre-
vious studies cited above. In a majority of these previous
studies, comparisons were made between two conditions:
one where a single sound was repeated in succession with
a high probability and the other where that same sound
occurred infrequently. In contrast, in our study, each of
the eight tones occurred with the same probability across
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all sequence conditions (random, “more musical,” “less
musical®); what distinguished the sequences in our study
was the local neighborhood in which each of the eight
sounds occurred. For the patterned sequences, the pre-
ceding and following sounds were predictable, whereas
in the random condition, they were not. The nature of
our stimuli may be sufficient to explain why we did not
observe a group-level enhancement to the patterned
condition. This is because unlike previous studies no
sound (or sound sequence) was ever repeated immedi-
ately following itself. An alternative, but not competing,
explanation is that SSA represents an early stage of pattern
learning, with enhancements emerging only after more
advanced level learning. For the more musical condition,
we observed relatively modest learning; however, as first
reported in Skoe et al. (2013) we obtained a continuum
of neurophysiological effects with the best learners being
more likely to show cABR enhancements and the worst
learners being more likely to show the greatest degree
of adaptation. Although this suggests that there are indi-
vidual differences in how statistical information is indexed
(for a similar account, see Lehmann & Schonwiesner,
2014), more work is needed to understand the condi-
tions that lead to attenuation versus enhancement of the
CABR.

Conclusions and Future Directions

Our auditory systems are subjected to an immense
amount of information every millisecond. The nervous
system depends on prior experience to overcome this
computational challenge. Our findings suggest that the
auditory brainstem plays a role in honing in on familiar
sounds and sound combinations, leading to an inter-
action between familiarity, implicit statistical learning,
and brainstem physiology. More generally, our findings
advance the contemporary view that the auditory brain-
stem is part of the neural circuitry mediating online and
long-term auditory learning. Our constellation of results
supports the possibility that the adult human auditory
brainstem indexes statistical regularities in a Bayesian-like
manner. Although we were careful to control for many
participant-level variables, we leave the possibility that
the between-group differences (for both behavioral and
ERP) are mediated by acoustic differences between the
sequences (e.g., size of the interval), differences in atten-
tion or vigilance, or other currently unaccounted for vari-
ables. Follow-up experiments using a larger variety of
stimuli (including speech), more fine-grained behavioral
testing, and wider age ranges are necessary to fully
evaluate the factors that influence how the subcortical
auditory system indexes stimulus probability. In addition,
we propose that, by adopting more advanced recording
techniques, such as simultaneously tracking neuro-
electric activity at cortical and subcortical centers during
auditory learning, the neural mechanisms may be more
clearly delineated.
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