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Abstract—To capture patterns in the environment, neurons

in the auditory brainstem rapidly alter their firing based on

the statistical properties of the soundscape. How this neural

sensitivity relates to behavior is unclear. We tackled this

question by combining neural and behavioral measures of

statistical learning, a general-purpose learning mechanism

governing many complex behaviors including language

acquisition. We recorded complex auditory brainstem

responses (cABRs) while human adults implicitly learned

to segment patterns embedded in an uninterrupted sound

sequence based on their statistical characteristics. The

brainstem’s sensitivity to statistical structure was measured

as the change in the cABR between a patterned and a

pseudo-randomized sequence composed from the same

set of sounds but differing in their sound-to-sound probabil-

ities. Using this methodology, we provide the first demon-

stration that behavioral-indices of rapid learning relate to

individual differences in brainstem physiology. We found

that neural sensitivity to statistical structure manifested

along a continuum, from adaptation to enhancement, where

cABR enhancement (patterned > pseudo-random) tracked

with greater rapid statistical learning than adaptation. Short-

and long-term auditory experiences (days to years) are

known to promote brainstem plasticity and here we provide

a conceptual advance by showing that the brainstem is also

integral to rapid learning occurring over minutes.
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INTRODUCTION

The nervous system is continuously flooded with sensory

information. Statistical learning facilitates the discovery of

patterns in the environment by piggybacking on the

nervous system’s fundamental ability to compute

statistical relationships between objects separated in

time (Saffran, 2003). These statistical calculations,

which generally occur rapidly (within minutes) and pre-

consciously (Abla et al., 2008; Cunillera et al., 2009),

can be observed in the auditory, visual, and tactile

modalities (Conway and Christiansen, 2005; Turk-

Browne et al., 2009; Mitchel and Weiss, 2011) and

across different species (Toro and Trobalon, 2005;

Saffran et al., 2008). In humans, this basic learning

mechanism is believed to bootstrap language acquisition

and promote the development of general cognitive

abilities (Saffran et al., 2001; Graf Estes et al., 2007;

Conway et al., 2009; Evans et al., 2009).

Behavioral-indices of auditory-based statistical learning

have been traced to neuroplasticity in the human auditory

cortex (Bonte et al., 2005; Abla et al., 2008; Francois and

Schon, 2011). However, statistical learning is likely not

the sole purview of the cortex. As evidence for this, there

is a body of literature demonstrating that neurons

throughout the auditory system, including subcortical

centers such as the auditory nerve and inferior colliculus,

change their firing patterns according to the statistical

features of the soundscape (Ulanovsky et al., 2003,

2004; Nelken, 2004; Dean et al., 2005; Perez-Gonzalez

et al., 2005; Malmierca et al., 2009; Wen et al., 2009;

Antunes et al., 2010). Consistent with this work in animal

models, sensitivity to simple stimulus statistics is also

observed in far-field responses from the human auditory

brainstem (Chandrasekaran et al., 2009; Parbery-Clark

et al., 2011; Slabu et al., 2012), whose cellular

generators include the inferior colliculus (Smith et al.,

1975; Moller et al., 1994; Chandrasekaran and Kraus,

2010). Human studies have also revealed that the

auditory brainstem undergoes learning-related plasticity in

response to short-term (de Boer and Thornton, 2008;

Song et al., 2008, 2012; Carcagno and Plack, 2011;

Chandrasekaran et al., 2012; Hornickel et al., 2012b) and

long-term auditory experiences (Krishnan et al., 2005;

Musacchia et al., 2007; Krizman et al., 2012), as well as

rapid within-session plasticity (Skoe and Kraus, 2010b),

suggesting that the brainstem subserves learning over

both abbreviated and protracted time scales. Based on

this collection of evidence, we hypothesized that the

auditory brainstem is part of the circuitry mediating rapid

statistical learning.
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While human brainstem activity is known to be

sensitive to salient statistics, such as when a single

pattern is repeated without interruption or an individual

sound is repeated with different probabilities, we are the

first to address (1) how this neural sensitivity to stimulus

statistics relates to rapid auditory learning of those

patterns, and (2) whether this sensitivity generalizes to

more ecologically valid conditions in which multiple

sound patterns are embedded within a single

uninterrupted sequence. Based on past work showing

that multisession auditory training triggers

enhancements in brainstem function (de Boer and

Thornton, 2008; Song et al., 2008, 2012; Carcagno and

Plack, 2011; Chandrasekaran et al., 2012; Hornickel

et al., 2012b; Anderson et al., 2013), we predicted that

rapid statistical learning would correlate with brainstem

physiology, with enhanced neural responses to

patterned sequences being associated with greater

behavioral learning (Chandrasekaran et al., 2009;

Parbery-Clark et al., 2011). By coupling non-invasive

neurophysiological and behavioral techniques, we take a

new approach to investigating brainstem responses to

complex sounds (cABRs). While cABRs have been

instrumental in revealing that short-term auditory

experiences (lasting days or weeks) promote learning-

related brainstem plasticity (Kraus and Chandrasekaran,

2010; Skoe and Kraus, 2010a), until now, cABRs have

only ever been measured before or after learning

occurred, not during the learning process itself.
EXPERIMENTAL PROCEDURES

Experimental design

We utilized a well-established method for examining rapid

statistical learning whereby subjects hear a sound sequence

formed from an arbitrary concatenation of patterns and are

tested afterward on their ability to recognize each pattern in

isolation (Saffran et al., 1999; Abla et al., 2008). In most

statistical learning paradigms, sequences are created from a

small inventory of patterns composed of speech syllables,

tones, or other sounds and these patterns are strung together

without immediate repeats or overt grouping cues to demarcate

pattern boundaries (Saffran et al., 1999; Cunillera et al., 2008;

Schon and Francois, 2011). In such paradigms, patterns can

only be discovered by calculating the transitional probability of

specific sound combinations within the sequence. For example,

in an arbitrary sequence created from ‘‘paku’’, ‘‘dibe’’, ‘‘togi’’,

‘‘dubo’’ (e.g., pakudibetogidibedubopakutogidubo) every time a

‘‘pa’’ is heard, there is a 100% probability that the next sound

will be ‘‘ku’’. Such statistical learning paradigms lead to implicit

learning (Perruchet and Pacton, 2006) within a matter of

minutes, as observed in adults (Saffran et al., 1999), children

(Graf Estes et al., 2007), infants (Saffran et al., 1996),

neonates (Teinonen et al., 2009) and non-human species (Toro

and Trobalon, 2005; Saffran et al., 2008). Moreover, in normal

populations performance is similar for linguistic and non-

linguistic sequences, suggesting that statistical learning is a

general-purpose learning mechanism (Saffran et al., 1999).

The brainstem’s role in rapid statistical learning was probed

by recording cABRs, far-field responses to auditory input that

reflect the synchronous activity of neural populations primarily

in the lateral lemniscus and inferior colliculus (Smith et al.,

1975; Moller et al., 1994; Chandrasekaran and Kraus, 2010).

Recordings were made from young adults while they passively
listened to eight complex tones that were sequenced into two

novel sound sequences composed from the same sounds but

with different tone-to-tone statistics (i.e., transitional

probabilities). The sound sequences contained either no

underlying structure (pseudo-random) or structure in the form

of four reoccurring two-tone (doublet) patterns. Within the

patterned sequence the doublets can be considered ‘‘words’’ or

meaningful units; in contrast, there were no meaningful sound

combinations within the pseudo-random sequence. Subjects

heard the pseudo-random condition first, followed by the

patterned condition. After listening to the patterned sequence

for 15 min., subjects were tested on how well they implicitly

learned the patterns (Figs. 1 and 2).

Subjects

28 adults participated in this study (18 females, age range:

18.20–29.04 years, mean = 21.11). Written informed consent

was obtained from all participants and all experimental

protocols were reviewed and approved by Northwestern

University’s Institutional Review Board. All participants had

normal bilateral hearing (air conduction thresholds <20 dB HL

for 0.125, 0.250, 0.5, 1, 2, 3, 4, 6, and 8 kHz and 65 dB

difference between left-ear and right-ear pure tone averages),

normal click-evoked ABR wave V latencies based on lab-

internal norms (30.1 Hz, 80 dB SPL), as well as normal

neurological function (self-report). Subjects had a mean non-

verbal IQ of 115.18 ± 10.227 (as measured by the Wechsler

Abbreviate Scale of Intelligence Matrix Design subtest or the

Test of Nonverbal Intelligence (TONI-3) and a range of formal

musical (instrumental) instruction, from 0 to 13 years with an

average of 4.21 ± 3.947 years.

Stimuli

The sound sequences were formed from eight 333-ms triangle

waves (Fig. 3). The fundamental frequencies (F0) of the

individual complex tones were 262, 294, 330, 350, 370, 393,

416, and 440 Hz with each tone mapping onto a specific

musical note (C4, D4, E4, F4, F#4, G4, G#4, A4, respectively).

Sound stimuli were created in Adobe Audition (Adobe System

Corp., San Jose, CA) with a 50-ms ramp (triangular window)

applied to the onset and offset of the stimulus in the MATLAB

programing environment (The Mathworks, Natnick, NJ).

Ramping was applied to prevent clipping when the stimuli were

sequenced. The complex tones contained only odd harmonics

of the F0 and each successive harmonic diminished in

amplitude by 1/H2, where H = harmonic number. Triangle

waves were chosen because they have a natural sound quality,

with a timbre akin to a clarinet.

Tone sequences were generated with algorithms in

MATLAB, resulting in one pseudo-random sequence and one

patterned sequence (Audio clips 1–2). In the patterned and

pseudo-random conditions, each tone had an equal probability

of occurrence (1 of 8, or 12.5%) but the local neighborhoods,

including the first-order transitional probabilities, were different

(Table 1). To create the pseudo-random sequence, the eight

tones were sorted pseudo-randomly within the sequence, with

the proviso that no tone was repeated in immediate

succession. For the patterned sequence the local neighborhood

of each sound was constrained, and therefore quite predictable.

In this sequence, the eight tones were grouped into four

doublets (two-tone combinations): EC, F#F, DG, G#A that each

occurred with a 25% probability (Fig. 2). As a first step to

creating the patterned sequences, a deep structure was formed

by stringing together the numbers 1–4 in pseudo-random order,

with each number appearing 120 times with no immediate

repeats (e.g., 1-2-3-1-3-2-4. . .). The individual doublets were

then mapped onto the deep structure, with numbers 1–4 being

replaced with EC, F#F, DG, G#A, respectively, to create the

stimulus sequence.



Fig. 1. Experimental design. Auditory brainstem responses to complex sounds (cABRs) were obtained using scalp-electrodes while subjects

listened to continuous sequences of complex tones that formed either a pseudo-random sequence (black) or a patterned sequence composed of

four recurring doublets (red) (Fig. 2). Electrodes were placed on the central vertex, forehead, and right earlobe. All subjects heard two conditions,

with the pseudo-random sequence presented first. Each 5-min sequence (small rectangles) was presented three times, with intervening breaks.

Within each 5-min block, each tone was heard approximately 100 times. After hearing the third block of the patterned condition, subjects were given

a two-alternative forced choice quiz that tested their ability to distinguish the doublets from foils, two-tone combinations that never occurred in the

patterned sequence. During the experiment, subjects sat in a comfortable reclining chair in a soundproof, electrically shielded booth. Subjects were

instructed to stay awake while the sounds were presented and to keep their gaze on the nature images appearing on the screen in from them. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Stimulus characteristics. Snapshots of the pseudo-random (black) and patterned (red) sequences are depicted here to illustrate their

defining characteristics. Each sample sequence represents 8.17 s of the respective condition. The sequences were composed of eight 333-ms

complex tones, with each mapping onto a different musical note. Within the sequences, the global statistics of the individual sounds were matched,

such that each tone played with a 12.5% probability, while varying the local context of the sound (Table 1). In the pseudo-random sequence, no tone

was repeated in immediate succession, but the sequence otherwise had no predictable structure. The patterned sequence was created from a set of

four two-tone patterns (EC, F#F, DG, G#A) that were concatenated pseudo randomly without conspicuous pattern breaks. Each pattern occurred

with a probability of 25% within the sequence but no pattern was played twice in a row (Table 1 and online Audio clips 1–2). For illustrative purposes,

the patterns are plotted in alternating shades of light and dark red. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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Each sequence was presented three times (approximately

5 min/sequence), with intervening breaks between blocks

(Fig. 1). After the subject reached the requisite number of

artifact-free trials per block (100/tone) (see next section), the

stimulus sequence was immediately stopped and the subject

was given a short break. To allow for a small percentage of

motion or other myogenic artifacts, an extra 20 trials per tone

was buffered into the sequence; however, in a majority of the

cases, the subjects reached the target number of artifact-free

trials (100/tone) before reaching the end of the sequence.
Electrophysiology

Stimulus presentation. Sounds were delivered binaurally

using Stim2 (Gentask module; Compumedics, Inc., Charlotte,

NC) at 70 dB SPL via ER-3A ear insert tubephones (Etymotic

Laboratories, Elk Grove Village, IL) with an inter-tone interval of

38.43 ms.
Recording and data processing procedure. cABRs were

recorded with an analog-to-digital rate of 20 kHz using scalp-

electrodes and a PC-based hardware/software system

(SynAmps 2 amplifier, Neuroscan Acquire, Compumedics,

Inc.). Three Ag–AgCl electrodes were placed on the scalp in a

vertical montage (Hood, 1998) (the active electrode at the

central vertex (Cz), reference electrode on the right earlobe,

and the ground electrode on the forehead; Fig. 1). Contact

impedance was kept <5 kX. Recordings were made in

continuous (non-averaged) mode with an online filter of 0.5–

3000 Hz.

As part of offline processing, recordings were filtered from 30

to 2000 Hz (12 dB/octave) and then each tone was epoched with

a window of �10 to 350 ms (Neuroscan Edit). After baseline

correcting each response to the mean voltage of the noise floor

(�10 to 0 ms), trials containing myogenic artifact were

discarded, using an automated procedure that flagged trials

with activity exceeding the range of ±35 lV. On average,

3.56% of trials were discarded due to artifact. The rejection rate



Fig. 3. The fundamental frequency of the stimulus is preserved in the complex auditory brainstem response (cABR) via phaselocking. cABRs were

recorded to sound sequences composed of eight complex tones ranging in their fundamental frequency (F0) from 262–440 Hz. To illustrate the

fidelity of brainstem phaselocking, frequency domain waveforms are plotted for each tone (top left) and their respective responses (bottom left).

Each color represents a different stimulus. The time domain waveform for the stimulus with the lowest Fo (middle C on a piano) is plotted on the top

right, with the response plotted below it. The stimulus amplitude is ramped during the initial and final 50 ms. For each response, the phaselocked

component corresponding to unramped portion of the stimulus (55–278 ms, marked by gray line) was converted to the frequency domain and the

amplitude at the stimulus F0 was calculated. A representative subject is plotted.

Table 1. First-order transitional probabilities for the pseudo-random (A) and patterned sequences (B). First-order transitional probabilities, defined as

the probability of two sounds being successive within the sequence, were calculated post hoc after the sequences were generated. (A) For the pseudo-

random sequence, all sound combinations occur, except that no sound follows itself. Because the sequences were created with this ‘‘sample without

replacement approach’’, the average transitional probability is roughly equal to 14.3% or 1/7. In addition, because the sequence was created with a

pseudo-random number generator, and the sequence was finite, the probabilities are matched but not identical. (B) For the patterned sequence,

composed of four recurring doublets, the first-order transitional probabilities are more constrained such that only certain sound combinations occur.

Doublets are defined as sound combinations with a transitional probability of 100% (bold)

Given. . . . . .probability it is followed by

C D E F F# G G# A

A. Pseudo-random condition:

C 11.11 17.95 11.97 11.11 20.51 18.80 8.55

D 20.83 15.00 11.67 15.83 14.30 13.33 10.83

E 13.22 19.83 13.22 14.05 11.57 8.26 19.83

F 17.80 13.56 12.71 11.02 12.71 15.25 16.10

F# 16.24 7.69 19.66 13.68 11.11 15.38 15.38

G 10.92 14.29 16.81 10.08 10.08 21.01 16.81

G# 11.90 17.46 10.32 14.29 20.63 13.49 11.90

A 6.72 15.97 9.24 23.53 12.61 17.65 14.29

B. Patterned condition:

C 34.40 33.60 32.00

D 100.00

E 100.00

F 31.09 34.45 34.45

F# 100.00

G 35.59 33.90 29.66

G# 100.00

A 32.76 35.34 31.90
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was stable across blocks as evaluated by a six-way repeated

measures analysis of variance (RMANOVA) (F(5,135) = 0.968,

p=0.440). The remaining pool of artifact-free trials was

averaged, with the mean number of trials being 298.47± 2.376

per tone for the pseudo-random condition and 299.64± 1.617

per tone for the patterned condition. The number of trials was

matched between the two conditions (F(1,27) = 2.086, p=0.160).

Although cABRs are traditionally evoked to a single stimulus

(e.g., speech syllable) that is presented repetitively over many

thousands of trials (Skoe and Kraus, 2010a), this study follows
a recent trend to record a smaller number of sweeps to a

greater variety of stimuli (Chandrasekaran et al., 2009; Skoe

and Kraus, 2010b, 2012; Parbery-Clark et al., 2012).

Extracting the response to the fundamental frequency (F0). The

response to the F0 served as the primary dependent variable

because brainstem nuclei demonstrate robust phaselocking to the

F0 of tonal stimuli below 2 kHz (Moushegian et al., 1973) and

because the brainstem response to the F0 can be modified by

short- and long-term auditory learning (Krishnan et al., 2005;
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Wong et al., 2007; Song et al., 2008, 2012; Kraus and

Chandrasekaran, 2010; Carcagno and Plack, 2011; Jeng et al.,

2011; Skoe and Kraus, 2012).

The phaselocked component (55–278 ms) of each cABR

subaverage (Fig. 3) was analyzed by applying a fast Fourier

transform (FFT) with zero padding (Moushegian et al., 1973;

Skoe and Kraus, 2010a), with the resultant response spectrum

having a 1-Hz resolution. This 55–278-ms time window was

chosen because it reflects when the stimulus amplitude is

unchanging (50–273 ms), after accounting for the roughly 5-ms

delay between when the stimulus enters the ear canal and

when the inferior colliculus responds (Hood, 1998). For each

tone, the amplitude of the response to the F0 was obtained for

each subject by finding the peak in the response spectrum

nearest the F0 of the stimulus (262, 294, 330, 350, 370, 393,

416, and 440 Hz, respectively) (Skoe and Kraus, 2010b). For

the pseudo-random condition, the mean frequencies of the

response were 261.54, 293.89, 329.71, 349.72, 369.89,

392.29, 415.50, and 440.04 Hz, respectively (SD= 1.835,

1.197, 0.763, 0.772, 0.875, 1.512, 0.923, 0.508). For the

patterned condition, the mean frequencies were 261.29,

294.07, 329.46, 349.57, 370.25, 392.46, 415.43 and 439.75 Hz,

respectively (SD= 1.697, 2.227, 1.138, 1.731, 1.735, 1.710,

1.260, 2.119). The frequencies of the F0 peaks did not differ

between the patterned and pseudo-random conditions

(F(1,27) = 0.015, p= 0.902, as assessed by a

Condition � Tone RMANOVA). For each F0 peak, a frequency

domain signal-to-noise ratio (SNR) was calculated by dividing

the amplitude of the F0 peak by the average energy of the

noise floor. We defined the noise floor as the average spectral

energy 30 Hz above and 30 Hz below the F0 peak.

Measuring the extent of pattern enhancement. To gauge how

the cABR to the patterned condition (Patt) differed from the

pseudo-random (Rand) condition, a percent change was

calculated:

Percent change ð%Þ ¼ ððPatt� RandÞ=RandÞ � 100

where Patt and Rand represent the average F0 amplitude to the

eight tones for the patterned and pseudo-random conditions,

respectively. A positive percent change indicates that the

response was larger (i.e., enhanced) in the patterned condition

relative to the pseudo-random one.

Experimental instructions and setting

At the outset of each block, subjects heard the following pre-

recorded instructions: ‘‘You will now hear a series of tones.

Listen carefully to the sounds because later on you will be

asked some questions to gauge how well you remembered the

sounds. Please keep your eyes open and focus your gaze on

the image on the screen. Try to sit as relaxed as possible. This

section will last 15 min – you will get a break every 5 min or

so.’’ To facilitate alertness while minimizing muscle movement,

subjects were shown a slideshow of 60 nature photos. The

1280 � 857 pixel images were played from standard DVD

player and projected into the testing chamber onto a large

projector screen in front of the participant. Each photo was

presented for 1 min with a four second fade between each

photo. Because statistical learning can be interrupted by a

concurrent task that is attention demanding (Toro et al., 2005),

subjects did not perform a photo-related task nor other

secondary task.

Behavioral assessment of learning

Immediately after the patterned condition, subjects were tested

on how well they learned the individual doublets comprising the

patterned sequence. In a two-alternative forced-choice test,
each doublet was paired with a foil pair, two sounds that were

never played together in the patterned sequence (Saffran et al.,

1999; Abla et al., 2008). Stimuli were presented via Stim2.

Subjects chose the more familiar sounding doublet in the pair

by pressing either the ‘‘A’’ or ‘‘B’’ button on a response box:

‘‘A’’ for the first doublet and ‘‘B’’ for the second. Each doublet

was paired once with one of four foils (EF, F#C, DA, G#G),

creating 16 comparisons. As with the ‘‘real’’ doublets, the foils

began with E, F#, D, G# (respectively) but differed in which

tone followed; this manipulation allowed us to test how the

subjects learned the statistical structure of the patterned

sequence. Behavioral scores were converted to percent

correct, with 50% representing chance performance. For two

subjects, behavioral scores fell outside two standard deviations

of the group mean (at 2.72 and �2.53, respectively). Following
common practice for reducing the influence of outlying points,

these scores were corrected to be at +2 or �2 (respectively)

standard deviations of the mean (Tabachnick and Fidell, 2007;

Field and Miles, 2010).
RESULTS

Neurophysiological data

To confirm that the responses were sufficiently robust,

frequency domain SNRs were computed. When

collapsing across notes, the average SNR was

3.84 ± 1.229 (range: 1.76–6.05) for the pseudo-random

condition and 3.78 ± 1.308 (range: 1.18–5.87) for the

patterned condition. The SNR did not differ between

conditions nor did the energy of the noise floor

(t(27) = 0.554, p= 0.584; t(27) = 0.293, p= 0.771,

respectively). Based on these analyses, we concluded

that the responses were robust enough to analyze further.

As a first analysis, we wanted to establish that the

cABR is different between the patterned and pseudo-

random conditions on the group level. A

Condition � Tone RMANOVA revealed a main effect of

condition (F(1,27) = 5.548, p= 0.026), with the

response to the patterned condition being smaller than

the pseudo-random condition when considering the

subjects as a group (Fig. 4).

However, individual subjects demonstrated a

spectrum of physiological outcomes that ranged from

adaptation to enhancement, with the percent change

following a normal distribution (Shapiro Wilk’s Test of

Normality: W(28) = 0.944, p= 0.139) that extended

from �30.64% to 10.42% (average percent change:

�3.52 ± 9.827%). 35.71% of the subjects showed an

enhanced cABR to the patterned condition.
Behavioral index of statistical learning

Across the group of subjects, behavioral performance

exceeded chance (t(27) = 5.658, p<0.005), suggesting

that on the group level the subjects learned, at least to

some degree, the structure of the patterned sequence.

Scores ranged from 37.50% to 85.15% and followed a

normal distribution (Shapiro Wilk’s Test of Normality:

W(28) = 0.934, p=0.078), with the average performance

being 61.27± 10.542%. This range and distribution of

individual differences in statistical learning is on par with

what has been reported previously (Saffran et al., 1999;

Abla et al., 2008).



Fig. 5. Brainstem physiology predicts behavioral outcomes.

Percent correct on the behavioral test is plotted as a function

of percent change in the complex auditory brainstem response

(cABR). Percent change is defined as: ((Patt � Rand)/Rand) � 100,
where Patt and Rand represent the average cABR to the patterned

and pseudo-random conditions, respectively. Greater neural

enhancements to the pattern condition relate to greater behavioral

learning (Pearson’s r= 0.560, p= 0.002).

Fig. 4. Context-dependent brainstem encoding. On the group level, responses are smaller in the patterned condition (red) relative to the pseudo-

random condition (black) (F(1,27) = 5.548, p= 0.026). Frequency domain waveforms for each note are overlaid (left), with the mean amplitude for

each condition plotted as a bar graph (right). (+1 standard error of the mean). To capture the differences between conditions, the responses to the

individual tones in the pseudo-random condition are all plotted in black and responses to the individual tones in the patterned condition are all plotted

in red. This group average of brainstem function cloaks individual differences in brainstem function that can be seen in Fig. 5. (For interpretation of

the references to color in this figure legend, the reader is referred to the web version of this article.)
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Relationship between neurophysiology and behavior

As predicted, statistical learning performance correlated

with brainstem physiology, such that higher behavioral

scores mapped to greater neural enhancements in the

patterned condition relative to the pseudo-random one

(Pearson’s r= 0.560, p= 0.002) (Fig. 5). It was further

confirmed that this brain-behavior relationship reflected

the physiological differences between conditions and not

the amplitude of the individual conditions. That is,

behavioral performance did not correlate with the

response to either the patterned or pseudo-random

conditions, the two neural measures used to derive the

percent change (behavior vs. pseudo-random condition:

Pearson’s r= �0.238, p= 0.223; behavior vs.

patterned condition: Pearson’s r= �0.032, p= 0.873).

The effect of musical training

Musicians have been shown to be better statistical learners

(Schon and Francois, 2011; Shook et al., 2012; Francois

et al., 2013), in addition to showing brainstem

enhancements to statistically predictable stimulus conditions

that correlate with years of musical practice (Parbery-Clark

et al., 2011). Based on this, we predicted that novice

musicians would show behavioral and neural enhancements

in our statistical learning paradigm. As predicted, subjects

with musical training (n=19) outperformed those without

musical training (n=9) on the behavioral test of statistical

learning (63.98± 9.180% vs. 55.56± 11.46%;

t(26) =�2.096, p= 0.046); however, as a group, the

musically trained subjects did not show larger physiological

enhancements than the untrained subjects (t(26) = �1.292,
p=0.225). This is because the neural enhancements were

observed in both trained and untrained subjects. Yet, when

considering only those subjects with musical training, more

years of training did correlate with greater physiological

enhancements (Pearson’s r=0.457, p=0.043).

Controlling for time- and state-dependent effects

In a separate control study, we confirmed that the

response to the pseudo-random condition is stable when

presented for a longer period. This test–retest
confirmation was performed on a different set of subjects

(n= 18, 14 females), who had similar demographics to

those tested on the patterned condition (age: 18.95–

27.26 years, non-verbal IQ: 119.70 ± 7.174, years of

formal music instruction: 7.56 ± 5.00 years). In this

case, when the pseudo-random condition was presented

a second time (six blocks total), there was no main effect

of condition (F(1,27) = 1.156, p= 0.297, as assessed

by a Condition � Tone RMANOVA). Consistent with this,

the change from the first to the second presentation of

the pseudo-random condition was not statistically

different from 0% (one sample t-test, t(17) = �0.580,
p= 0.569); that is ((Rand2 � Rand1)/Rand1) � 100 =

0%. This finding is consistent with literature

demonstrating that the auditory brainstem response has

a high test–retest reliability (Chiappa et al., 1979; Song

et al., 2011a; Hornickel et al., 2012a). Because the
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experimental setting, instruction, and duration were

identical to the central Statistical Learning experiment,

the results of this control study help to rule out the

potential influence of task or state-dependent effects

(Baas et al., 2006; Hairston et al., 2013).
DISCUSSION

For humans, statistical learning provides a cornerstone

for language and music skills by underpinning the

process of grouping sounds into meaningful units

(Saffran, 2003; Graf Estes et al., 2007). Here we

examined the subcortical correlates of this fundamental

learning mechanism by recording cABRs during the

learning process, something that has been never done

before. We found that the amount of statistical learning

that takes place over 15 min relates to the strength with

which statistically probable sound sequences are

indexed in the brainstem. Although our stimuli did not

contain the full complexities of natural sound systems,

the ability to segment our relatively simple sequence

into constituent patterns draws on the same

mechanisms needed to parse ongoing speech and

music (Saffran et al., 1999; Romberg and Saffran,

2010). Thus, with this statistical learning paradigm, we

believe we are tapping into the neural networks that

subserve human’s ability to learn complex sound

systems such as language and music.
The brainstem is an active sound processor:
Extending previous findings

As demonstrated previously in human and animal models,

the auditory brainstem is an active sound processor that

is sensitive to statistical features of auditory input,

including changes in predictability and immediate

context (Dean et al., 2005, 2008; Perez-Gonzalez et al.,

2005; Chandrasekaran et al., 2009; Malmierca et al.,

2009; Skoe and Kraus, 2010b; Parbery-Clark et al.,

2011; Strait et al., 2011; Slabu et al., 2012). However,

in humans this sensitivity is not absolute and does not

emerge under all stimulus conditions (Slabu et al., 2012)

or for all populations (Chandrasekaran et al., 2009;

Parbery-Clark et al., 2011; Strait et al., 2011). For

example, in children with language-based learning

impairments the cABR does not change when the

statistics of the stimulus train are altered. This is in

contrast to typically developing children whose cABRs

are enhanced when the stimulus train contains a single

(predictable) sound compared to a pseudo-randomized

mix of sounds in which the target sound is presented

both infrequently and unpredictably (Chandrasekaran

et al., 2009). Similar findings have emerged for highly

trained expert musicians compared to non-musicians

using the same stimulus paradigm (Parbery-Clark et al.,

2011). In this case, musicians, unlike non-musicians,

demonstrate larger cABRs to the statistically predictable

condition versus the unpredictable one. Notably, these

previous cABR findings dovetail with behavioral

evidence that musicians outperform non-musicians on

auditory statistical learning tasks (Francois and Schon,
2011; Shook et al., 2012; Francois et al., 2013) and

language-impaired children perform at chance on such

tasks (Evans et al., 2009).

While this forerunning work hinted that the auditory

brainstem might be involved in statistical learning, and

might account for individual differences in human

learning, conclusive statements could not be drawn for a

variety of reasons. First, and foremost, unlike the

current study, which recorded cABRs as part of a

learning paradigm, in previous studies,

neurophysiological assessments did not incorporate

behavioral measures of statistical learning. The stimulus

parameters used previously were also not optimal for

establishing a link between brainstem physiology and

statistical learning. Due to how the stimulus paradigms

were constructed, with some sounds occurring more

frequently than others, it was unclear whether neural

enhancements in humans reflected the brainstem’s

ability to track statistical relationships between adjacent

sounds, a requisite for learning linguistic and musical

structure, or merely its ability to track how frequently an

individual sound occurs within a sound sequence

(Chandrasekaran et al., 2009; Skoe and Kraus, 2010b;

Parbery-Clark et al., 2011; Strait et al., 2011; Slabu

et al., 2012).

To tease out the role that the brainstem plays in

statistical learning, and also to assess the computational

sensitivity of the brainstem, we incorporated a

behavioral test of learning and compared cABRs

between patterned and pseudo-random sound

sequences where the frequency of occurrence for each

sound was equated between sequences. In addition, to

make the sound sequences more naturalistic, we

modeled the patterned condition after those used

previously in the statistical learning literature (Saffran

et al., 1999; Graf Estes et al., 2007). The patterned

sequence contained four interknit patterns, with the only

grouping cue being the statistical dependencies

between sounds. Additionally, although the sound

patterns repeated within the sequence, there were no

local repeats, with each pattern always separated by at

least one other. Thus, to discover the patterns within the

continuous stream of sounds, inter-sound statistics, not

the individual sound probability, needed to be tracked

over time.

By recording cABRs as part of a statistical learning

paradigm and controlling for the frequency of

occurrence, our results reinforce and extend the view

that the brainstem is an active sound processor that

adjusts dynamically based on the immediate behavioral

context (Perez-Gonzalez et al., 2005; Tzounopoulos and

Kraus, 2009; Kraus and Chandrasekaran, 2010; Skoe

and Kraus, 2010b). We speculate that if the brainstem

were only sensitive to the frequency of occurrence but

not other statistical cues imparting structure (e.g., the

likelihood of two sounds being temporally adjacent),

then the two conditions should have produced

indistinguishable cABRs because the frequency of

occurrence was matched. The fact that the cABR is

different between the pseudo-random and patterned

conditions, and the fact that the response to the
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pseudo-random condition is stable over an extended time

period as revealed in the control study, leads us to more

definitively conclude that the brainstem can index

statistical relationships among sounds, in addition to

tracking the overall probability of individual sounds.

Notably, however, we observed individual differences in

how stimulus statistics were indexed in the cABR. Within

our population of normal young adults, the brainstem’s

sensitivity to stimulus statistics manifested along a

continuum from adaptation to enhancement. Similar to what

has been shown for cortical-evoked potentials (Abla et al.,

2008), we found that the more enhanced the subcortical

response to the patterned (predictable) condition was

relative to the pseudo-random condition, the greater the

learning outcome. Moreover, we found that behavioral

performance correlated with the change in physiology

between the patterned and pseudo-random conditions, but

it did not correlate with the amplitude of the response to the

individual conditions. This is interesting because it suggests

that individual differences in auditory learning are not simply

driven by baseline differences in auditory brainstem

function but instead reflect individual differences in how the
brainstem adjusts to different stimulus conditions.

Taken together, our findings suggest that differences

in auditory brainstem physiology may, at least partially,

account for individual differences in statistical learning

that are observed across normal and impaired

populations (Saffran et al., 1999; Abla et al., 2008;

Evans et al., 2009; Scott-Van Zeeland et al., 2010;

Misyak and Christiansen, 2012; Peretz et al., 2012). In

this regard, the auditory brainstem provides a barometer

of individual differences in behavioral outcomes. We

suggest that these physiological differences may reflect

genetic and/or experiential differences among subjects

(Parbery-Clark et al., 2009; Soros and Stanton, 2012;

Hairston et al., 2013; Hornickel and Kraus, 2013).

Although the continuum of function that we observed

could not be explained by differences in musical history

across the whole group, within the musically trained

subjects, more years of practice tracked with greater

physiological enhancements. This result supports the

idea that experience can shape these processes, but

that it alone cannot account for the range of inter-

individual function we observed.

Neural mechanisms of statistical learning: The
interaction of local and top-down mechanisms within
the inferior colliculus

Multiple lines of evidence from animal and human data

trace the neural origins of the cABR to the rostral

brainstem, with a major contributor being the inferior

colliculus (IC) (Smith et al., 1975; Moller et al., 1994;

Chandrasekaran and Kraus, 2010; Warrier et al., 2011).

The IC, one of the most metabolically active centers of

the brain (Sokoloff, 1977), serves as a relay center for

ascending and descending auditory information (Winer,

2006). Evidence from animal models points to the IC as

having a kind of ‘‘primitive intelligence’’ that can track

complex stimulus statistics over time (Perez-Gonzalez

et al., 2005). We now expand upon our understanding of

the IC, and the functional role it plays in processing and
learning stimulus statistics by concluding that the IC is

part of the neural circuitry mediating rapid auditory learning.

While studies of IC function in humans and laboratory

animals have revealed that neurons in the IC adjust their

responses based on the statistics of the sound input, the

effect manifested in different forms. Direct recordings of

the IC from anesthetized animals indicate that single

neurons and neuronal populations adapt to commonly

occurring sound combinations and features (Perez-

Gonzalez et al., 2005; Malmierca et al., 2009). Yet, in

contrast, for far-field IC recordings from awake humans

statistically predictable stimulus conditions produce

either no change or enhanced cABRs (Chandrasekaran

et al., 2009; Skoe and Kraus, 2010b; Parbery-Clark

et al., 2011; Slabu et al., 2012). Our data help to unify

these seemingly contradictory results in the animal and

human literatures by revealing a physiological spectrum

in a healthy young adult population, with some

individuals showing enhanced and others showing

attenuated responses to patterned sound sequences.

To provide a unified account of the IC and its

sensitivity to statistical regularities, we theorize that

adaptation represents a default mode of indexing

statistical regularities within the IC. This default mode

may, however, be overridden by a top-down

(exogenous) mechanism(s) that accentuates the

transmission of sounds or sound features, leading to an

enhanced response under certain stimulus conditions

and/or in certain individuals. Thus, we raise the

possibility that neural enhancements seen in the cABR

may reflect learning-related neuroplastic changes

occurring in higher-order centers of the brain that alter

the functional state of the auditory brainstem. Such top-

down initiated changes could arise by activating the

corticofugal system, a communication link between the

auditory cortex and subcortical structures. Through this

system of efferents the cortex is able to rapidly alter

subcortical sensory processing to improve, in an online

fashion, the input the cortex receives (Suga et al.,

2002). By our argument, activation of the corticofugal

system may induce a temporary change in the balance

between excitatory and inhibitory mechanisms in the IC,

and this change may override adaptive mechanisms

that are endogenous to subcortical structures producing

a response enhancement (Yan et al., 2005; Nelken and

Ulanovsky, 2007; Bauerle et al., 2011). In this regard,

learning-related neural plastic changes need not

necessarily have occurred at the level of the IC but may

reflect instructive feedback from the cortex that is

relayed during the learning process.

There are several layers of evidence from the animal

literature to support our argument. First, there is

evidence that the corticofugal pathway is necessary for

auditory learning, given that learning is disrupted when

this efferent pathway is ablated (Bajo et al., 2010).

Second, IC neurons that adapt to a repeated stimulus

are found in a region of the midbrain that is rich with

corticofugal connections (Herbert et al., 1991; Perez-

Gonzalez et al., 2005). Third, because animal

physiology is typically recorded under anesthetized

conditions, and because anesthesia mutes efferent

activity (Boyev et al., 2002), direct recordings from the
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IC in animal models likely reflect the default mode (i.e.,

adaptation) of processing stimulus statistics. However,

the very existence of this mass of top-down connections

in the IC suggests that these neurons, which are

sensitive to stimulus statistics, might be under the

influence of the auditory cortex for more active listening

conditions (Perez-Gonzalez et al., 2005; Nelken and

Ulanovsky, 2007).

Although the current methodology for recording

cABRs in humans cannot provide direct evidence that

top-down modulation has occurred, or isolate the points

at which top-down modulation might be initiated and

terminated, such techniques have been developed in

humans for studying medial olivocochlear (MOC)

efferents, the lowest branch of the corticofugal pathway

that originates in the superior olive and innervates the

Organ of Corti (Zhao and Dhar, 2011). From this work

on the human MOC, we know that auditory learning can

alter efferent activity (de Boer and Thornton, 2008) and

that efferent function falls along a continuum with, for

example, highly trained musicians having stronger

efferent function (Perrot et al., 1999) and children with

auditory processing disorders having reduced function

(Muchnik et al., 2004).

Moreover, top-down processes, such as selective

attention, can affect even the most peripheral levels of

the auditory system as seen in both human and animal

models (Delano et al., 2007; Srinivasan et al., 2012).

While attentional demands were not experimentally

manipulated in the current study, we cannot rule out

that attention did not play a role in our findings. Subjects

were not given explicit instructions as to what to attend

to in the stimuli but were instead instructed to ‘‘listen

carefully to the sounds’’ irrespective of the condition.

However, in line with what has been proposed by Baker

et al. (2004) for visual statistical learning, the structured

nature of the patterned sound sequence may have

made it inherently more attention grabbing than the

unpatterned sequence. As such, involuntary attention to

the stimuli may have differed between the patterned and

unpatterned conditions (Baker et al., 2004). Given

known differences in efferent function among

individuals, combined with inter-individual differences in

brainstem physiology (Galbraith et al., 2000; Banai

et al., 2009; Chandrasekaran et al., 2009; Parbery-Clark

et al., 2011; Song et al., 2011b; Soros and Stanton,

2012; Hairston et al., 2013) and attentional abilities

(Soveri et al., 2011; Krizman et al., 2012), we speculate

that the ability to learn the statistics of a soundscape

hinges on individual differences in brainstem physiology,

both in terms of how inter-sound statistical relationships

are calculated and how these calculations are modified

by individual differences in top-down processes.
Which came first, brainstem enhancements or
learning?

While we have established a link between brainstem

physiology and learning occurring over approximately

15 min, this link may be partially obfuscated by the

‘‘noisiness’’ of behavioral data. Although cABRs may
reveal the physiological conditions promoting behavioral

learning, unlike neuroelectric measurements, behavioral

tests may underestimate the extent of learning because

they can be tainted by the subject’s motivation, task

understanding, etc. (Francois and Schon, 2010).

Moreover, while cABR enhancements are associated

with better behavioral learning, our methodology cannot

dissect whether brainstem enhancements are the

instigator or the result of greater behavioral outcomes,

or when in the chain of events that underlie learning the

brainstem enhancements emerge. Thus, the relationship

between cABR enhancements and improved behavioral

performance remains a ‘‘chicken or egg’’ question.

Developing non-invasive methodology to pinpoint when

top-down modulation is initiated in humans, isolating the

roles of excitatory and inhibitory pathways, and tracking

behavioral learning over time, may unlock the sequence

of neural events that underlie learning in addition to

shedding light on the source(s) of the individual

differences we observed.
CONCLUSION

There is mounting evidence that the auditory brainstem is

tuned by learning-related experiences lasting days to

years (Kraus and Chandrasekaran, 2010; Skoe and

Kraus, 2010a). We now provide a significant scientific

advance by showing that the auditory brainstem is also

integral to learning occurring over minutes. Future

studies should test the limits of the brainstem’s

computational abilities and its involvement in online

learning by using more complex stimulus statistics that

approximate natural language.
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