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Abstract
Auditory-evoked potentials are classically defined as the summations of synchronous firing along the auditory neuraxis.
Converging evidence supports a model whereby timing jitter in neural coding compromises listening and causes variable
scalp-recorded potentials. Yet the intrinsic noise of human scalp recordings precludes a full understanding of the biological
origins of individual differences in listening skills. To delineate the mechanisms contributing to these phenomena, in vivo
extracellular activity was recorded from inferior colliculus in guinea pigs to speech in quiet and noise. Here we show that
trial-by-trial timing jitter is a mechanism contributing to auditory response variability. Identical variability patterns were
observed in scalp recordings in human children, implicating jittered timing as a factor underlying reduced coding of
dynamic speech features and speech in noise. Moreover, intertrial variability in human listeners is tied to language
development. Together, these findings suggest that variable timing in inferior colliculus blurs the neural coding of speech in
noise, and propose a consequence of this timing jitter for human behavior. These results hint both at the mechanisms
underlying speech processing in general, and at what may go awry in individuals with listening difficulties.
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Introduction
Neurophysiological responses to evoked stimuli have provided
a window into individual differences in sensory processing,
revealing the imprint of experience, the impact of language and
learning problems, and insight into future linguistic abilities
and disabilities. These approaches have proven especially fruit-
ful in the auditory system, where speech-evoked neurophysio-
logical responses offer a noninvasive means to evaluate the
integrity of neural processing in humans. In particular, the

frequency-following response (FFR) to speech evaluates the
precision of time-locked neurophysiological activity elicited by
features in the speech signal.

The FFR is generated predominantly by inferior colliculus
(IC), the lemnsical midbrain nucleus of the ascending auditory
system (for review see Chandrasekaran and Kraus 2010). An
important metric quantifies the intertrial variability of the FFR,
which is based on the assumption that variability across
responses to the same sound reflects subtle dyssynchronies in
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neural firing. This approach effectively characterizes FFRs in
individuals with listening difficulties, and suggests that high
intertrial variability represents a key neurophysiological mech-
anism underlying atypical perception in these individuals. For
example, variable responses to speech are evident both in chil-
dren with reading impairment (Hornickel and Kraus 2013;
White-Schwoch et al. 2015b) and older adults (Anderson et al.
2012; Ruggles et al. 2012), populations that often experience
speech perception difficulties in adverse listening conditions
(Dubno et al. 1984; Pichora-Fuller et al. 1995; Bradlow et al.
2003; Ziegler et al. 2005; Gordon-Salant et al. 2010). Extreme
variability in subcortical neural firing (auditory neuropathy)
causes extreme difficulties understanding speech in noise and
rapid temporal cues (Zeng et al. 1999; Kraus et al. 2000).

Animal models support the hypothesis that poor auditory
processing can be grounded in imprecise temporal resolution
in the central auditory system. Rodent models of auditory aging
document extensive declines in inhibitory neurotransmitter
receptors in auditory midbrain, thalamus, and cortex, presum-
ably degrading synchronous firing across units (Caspary et al.
1995, 2008, 2013; Milbrandt et al. 1997; Walton et al. 1998;
Richardson et al. 2013) and constraining the neural representa-
tion of dynamic acoustic cues (Parthasarathy and Bartlett 2011;
Cai and Caspary 2015; see also Anderson et al. 2012; Presacco
et al. 2015). Similarly, rat models of language impairment,
including dyslexia and autism, exhibit less precise spike timing,
smaller local field potentials, and poorer physiological categor-
ization of human speech in auditory cortex (Engineer et al.
2014, 2015; Centanni et al. 2014a, 2014b).

Similar phenomena may underlie the difficulty some listen-
ers experience understanding speech in noise, despite normal
audiograms. Among these individuals are certain children with
language-based learning disabilities (Wright et al. 1997;
Bradlow et al. 2003; Ziegler et al. 2005; but see Messaoud-Galusi
et al. 2011) and older adults (Pichora-Fuller et al. 1995; Gordon-
Salant 2014; Füllgrabe et al. 2015; but see Schoof and Rosen
2014). It has been proposed that variable neural firing underlies
these perceptual difficulties, based on the aforementioned
neurophysiological approaches (Anderson et al. 2012; Hornickel
and Kraus 2013; White-Schwoch et al. 2015a; 2015b) and behav-
ioral evidence that “jittering” periodicity cues in speech tokens
impairs young adults’ recognition such that they perform simi-
larly to older adults (Pichora-Fuller et al. 2007). Also noteworthy
is that individuals with autism—another population that often
experiences listening difficulties (Gervais et al. 2004; Kuhl et al.
2005; Russo et al. 2008; Abrams et al. 2013), including processing
speech in noise (Alcántara et al. 2004; Russo et al. 2009)—
exhibit variable evoked responses to auditory, visual, and som-
atosensory stimuli (Dinstein et al. 2012). Thus, variability in
sensory coding may be an intrinsic biological constraint on
information processing.

Delineating the mechanisms underlying FFR variability has
proven challenging given the inherent noise in scalp recordings
—these recordings typically require averaging across hundreds,
if not thousands, of trials to compute an interpretable evoked
response. This limitation precludes a full understanding of the
mechanisms underlying FFR variability and its link to auditory
perception. Thus, the overarching aim of this report is to inves-
tigate local mechanisms contributing to scalp-recorded
response properties and, by extension, the biological phenom-
ena that may contribute to individual differences in auditory
processing.

A first goal of this report is to directly compare near-field
(depth-recorded) evoked responses in an animal model to

far-field (scalp-recorded) responses in humans as a function of
stimulus conditions. Animal models offer insight into local
neural activity that is unavailable in humans. Thus, investiga-
tions in animal models facilitate knowledge of the basic
mechanisms underlying response patterns observed in
humans. When these response patterns are disrupted in clin-
ical populations, relating them back to “typical” animal models
may lead to a better understanding of the specific physiological
processes that have gone awry. These comparisons ideally
minimize methodological differences between species. To this
end, we investigated neurophysiological responses in the gui-
nea pig, an animal that exhibits hearing sensitivity comparable
to humans within the frequency spectrum of speech (Fay 1988).
This allowed us to deliver identical stimuli to animal and
human subjects. We also strived to standardize physiological
recording and analysis methodologies across the human and
animal study components.

A second goal of this report is to investigate behavioral rami-
fications of intertrial timing variability in response to speech
heard in background noise in children. Our previous work estab-
lished that preschoolers with poor early language skills exhibit
more variable neurophysiological responses to consonant–vowel
(CV) transitions in noise than their peers (White-Schwoch et al.
2015b). This aligns with evidence that children with language or
literacy impairment exhibit a similar profile (Hornickel et al.
2012; Hornickel and Kraus 2013), and with evidence that a rat
model of dyslexia exhibits variable cortical responses to conson-
ant-vowel-consonant speech sounds (Centanni et al. 2014a,
2014b). Here, we aim to extend these findings in humans and tie
them to work in the animal model. To our knowledge, this is one
of the first efforts to directly compare neurophysiological
response variability between humans and an animal model, and
thus has potential to conceptually “bridge” local activity, scalp
recordings, and emergent language skills.

We employed a comparative neurophysiological approach
by eliciting responses to identical speech-like stimuli in quiet
and background noise in an animal model and in humans.
Although there are striking similarities noted in response pat-
terns to speech sounds between human scalp recordings and
near-field recordings in animal models, to our knowledge these
have not been directly compared. This knowledge gap limits
our understanding of the neural events that may contribute to
auditory processing and disorders thereof.

Our central hypothesis is that, in auditory midbrain, timing
variability blurs the neural representation of perceptually vul-
nerable speech features in noise. In turn, we hypothesize that
children who exhibit excessive response variability in noise lag
behind their peers in language development. Comparisons of
patterns of intertrial variability across species may elucidate
the mechanisms contributing to aggregate population
responses in humans and, by extension, auditory processing
abilities and disabilities.

Materials and Methods
Auditory-neurophysiological responses were elicited to synthe-
sized speech in quiet and noise in human listeners and an ani-
mal model. Identical stimuli were used in both study
components. In animal experiments, in vivo extracellular activ-
ity was recorded from several sites in the central nucleus of
inferior colliculus (ICc) across laminae, along with simultan-
eous recordings at the epidural surface. In a parallel human
experiment, scalp-recorded responses (FFRs; also known as
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auditory brainstem responses to complex sounds, or cABRs)
were elicited from a cohort of young children (ages 3–5 years).

Using preschool-aged children as the human cohort pre-
sents several advantages. Young children tend to have large
FFRs that are likely to be interpretable when subaveraged (see
Data Analysis, later). Moreover, given evidence that a life of
noise exposure may cause neural degeneration prior to a
threshold shift on the audiogram (Sergeyenko et al. 2013), and
that this degeneration may shape FFR response properties
(Ruggles et al. 2012; Plack et al. 2014), using young listeners pro-
vides some safeguards against this potential factor. Further-
more, biological mechanisms underlying children’s auditory
function are of particular theoretical and clinical interest
because remediation to improve listening and language skills
may be most efficacious during early childhood (Bishop and
Adams 1990), which is an established period of developmental
neuroplasticity in human auditory midbrain (Johnson et al.
2008; Anderson et al. 2015; Skoe et al. 2015).

These children were also tested on a standardized test of
phonological processing (knowledge and manipulation of the
sound structure of spoken language). Phonological processing
is a chief primitive in language development, and phonological
deficits are observed in many children with language impair-
ment and/or poor literacy achievement (Bishop 1997); in many
cases, these language impairments overlap with listening diffi-
culties (Tallal and Piercy 1973; Moore et al. 2010; but see Rosen
2003; Goswami 2014).

Two aspects of neural coding are of interest, both of which
quantify variability in neural coding across trials. The first is
termed “representational variability” (henceforth, variability)
and quantifies the morphological dissimilarity of responses
across trials. The second is “timing variability” (henceforth, jit-
ter) and quantifies the timing dissimilarity of responses across
trials.

Ethical Statement

The animal protocol was approved by the Institutional Animal
Care and Use Committee of Northwestern University, pursuant
to all United States ethical guidelines for laboratory animal
welfare (assurance number A3282-01). The human protocol was
approved by the Institutional Review Board of Northwestern
University, pursuant to the Declaration of Helsinki (assurance
number FWA 00001549); parents provided written informed
consent and children provided verbal assent.

Stimulus

The stimulus for both the animal and human experiments
was a CV syllable [da]. The rationale for using this stimulus is
that stop consonants such as /d/ pose special challenges to
several groups of listeners, including children with learning
problems and older adults. Moreover, it has long been noted
that the perceptual challenges posed by stop consonants are
exacerbated in noise (Miller and Nicely 1955; see also
Cunningham et al. 2001, 2002; White-Schwoch et al. 2015a).
With respect to FFR intertrial variability in humans, previous
studies have demonstrated that children with learning pro-
blems exhibit excessive variability in response to stop conso-
nants, including in noise (White-Schwoch et al. 2015b; see
also Centanni et al. 2014a, 2014b). Although these sounds are
slightly lower in frequency than a typical guinea pig vocaliza-
tion, they are still well within the range of audibility (Fay
1988); historically, this approach has proven fruitful in

evaluating how auditory-neurophysiological activity changes
along acoustic dimensions that are behaviorally salient to
human listeners (Kraus et al. 1994; McGee et al. 1996;
Cunningham et al. 2002; Warrier et al. 2011).

A single [da] token was used, and this stimulus was
repeated across trials to determine the extent to which the
auditory system represents this stimulus invariably. The [da]
was a synthesized 170ms 6-formant syllable that began with a
stop onset burst and had a 5ms voice onset time (Klatt-based
synthesizer, SenSyn, Sensimetrics Corporation, Malden, MA).
The CV transition lasted 50ms and this period was followed by
a 120ms steady-state vowel. The fundamental frequency (F0)
was fixed at 100Hz. During the CV transition, the lower 3
formants shifted (F1, 400–720Hz; F2, 1700–1240Hz; F3, 2850–
2500Hz) but were steady for the vowel period. The upper 3
formants were steady throughout the stimulus (F4, 3300 Hz; F5,
3750Hz; F6, 4900 Hz). A waveform of the [da] is presented in
Figure 1 along with a spectrogram (generated in Luscinia,
http://rflachlan.github.io/Luscinia; last accessed 17 September
2016). On half of the trials the polarity of the [da] was inverted
(stimulus waveform multiplied by −1) to avoid stimulus arti-
facts in the neural responses.

The [da] was presented in isolation (the “quiet” condition)
and masked by multitalker babble (the “noise” condition). The
babble track consisted of 6 talkers and was presented continu-
ously over the speech token. Please refer to Van Engen and
Bradlow (2007) for details on its acoustics. Although a single
babble track is used and repeated, it is 22 s long (compared with

Figure 1. (Top) The waveform of the [da] stimulus is shown in the time domain

along with a spectrogram. (A) Single traces of near-field activity recorded from

central nucleus of inferior colliculus are illustrated—20 randomly selected trials

have been overlaid, each in a different color. Single-trial activity showed phase-

locked activity to the stimulus (top) and had a high signal-to-noise ratio. (B) In

contrast, recordings made at the human scalp did not have adequate single-

trial SNR and had to be averaged across thousands of repetitions. An equal

number of randomly selected trials from a human subject are shown here to

illustrate that these do not have the SNR appropriate to analyze single trials.
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the 170ms stimulus). The babble track is looped continuously
to avoid phase synchrony between the [da] and the babble
track. In both the animal and human components of this study,
in the noise condition the [da] was presented at a +10 dB
signal-to-noise (SNR) ratio.

Animal Component

Subjects and Preparation
The subjects in the animal component were 10 pigmented gui-
nea pigs (Cavia porcellus; 7 female) weighing 346–803 g (mean,
549 g). Animals were anesthetized before recording with a keta-
mine hydrochloride (60mg/kg) and xylazine (8mg/kg) cocktail.
Supplemental doses (15mg/kg ketamine; 4mg/kg xyalzine)
were administered hourly or as needed throughout the record-
ing session. Following anesthetization, subjects were mounted
in a stereotaxic device in a soundproofed and electrically
shielded booth (IAC Acoustics, Bronx, NY). Body temperature
was maintained at 37.5°C with a thermistor-controlled heating
pad (Harvard Apparatus, Holliston, MA) on the subject’s
abdomen.

To confirm normal hearing sensitivity, auditory brainstem
responses (ABR) were elicited by a click stimulus at 50 and
80 dB SPL in each subject. To measure ABRs, electromyographic
needle electrodes were inserted into the skin midway between
the 2 ears (noninverting), on the snout midway between the
eyes and nose (inverting), and into loose skin at the neck
(ground).

Surgery
A rostro-caudal incision was made along the scalp surface and
tissue was retracted to expose the skull. Following exposure,
holes were drilled into the skull under an operating micro-
scope. A section of the dura was removed with a cautery, and
mineral oil was used to coat the cortical surface. ICc was
accessed using a vertical approach with tungsten microelec-
trodes (MicroProbes, Gaithersburg, MD). The electrode imped-
ance was approximately 2MΩ at 1 kHz, which corresponds to a
recording volume conservatively calculated at <0.1mm3, and
therefore reflects multiunit activity. An electrode was advanced
perpendicular to the cortical surface using a remote-controlled
micromanipulator (Märzhäser Wetzlar GmbH & Co. KG,
Wetzlar, Germany), and for all recordings the dorsal/ventral ref-
erence of the electrode was determined at a point slightly
above cortex surface; this position was maintained for all pene-
trations within a subject. ICc coordinates were approximately
0.3mm caudal to the interaural line, 1.5mm left of the sagittal
suture, and 4.0mm ventral to the surface of the brain.
Simultaneous surface recordings were measured with a super-
dural silver ball electrode placed at the vertex 10mm caudal to
Bregma. The ground electrode (alligator clip) was positioned in
loose skin towards the posterior of the scalp and the reference
electrode (silver ball) was placed 15mm rostral of Bregma.

Neurophysiological Recording
A depth penetration technique was used during electrode
advancement. Click stimuli (100 μs rectangular pulses) were
delivered at 3.5 Hz. Multiple penetrations were made in each
subject. A monitoring oscilloscope was inspected and the
response size and gross waveform morphology were consid-
ered. If the response was small and broad, electrode penetra-
tion was continued until the waveform was characteristic of an
ICc response, namely, large amplitude with a sharp onset.
Location was verified by comparing characteristics of responses

to probe tones and noise to published response properties of
ICc neurons (Rees and Palmer 1988; Syka et al. 2000; Liu et al.
2006).

The best frequency (BF) region of each site was determined
using a procedure similar to Xie et al. (2007). Specifically, we
determined what frequency from 160 to 16 000 Hz (varying in
third octaves) elicited the most robust response at each site.
Each probe tone was presented at a low intensity (30 dB HL)
and was 100ms in duration with a 10ms rise-fall time and a
110ms interstimulus interval (ISI). A total of 30 repetitions of a
tone at a given frequency were presented, and the entire group
of tones was presented varying in frequency in a pseudoran-
dom order for each recording site. Tuned regions for each sub-
ject are summarized in Figure 2. BFs ranged from 160 to 6300 Hz
(median: 1250 Hz). It should be noted that this range of BFs only
represents a subset of the guinea pig tonotopic axis (Malmierca
et al. 1995); this range was selected because it corresponds to
the frequencies present in speech. The goal in selecting record-
ing sites was to get a range of BFs across the frequency spec-
trum of speech; in some cases multiple recordings were made
from 2 or more sites with the same BF.

For each recording site in ICc, 300 presentations of the [da]
(150 per polarity) were presented using a computer with cus-
tom MATLAB programs (Mathworks, Natick, MA). Stimuli were
converted to analog signals using a National Instruments D/A
converter (National Instruments Corporation, Austin, TX) and
delivered via electromagnetically shielded earphones (ER-2;
Etymotic Research, Inc., Elk Grove Village, IL) monaurally
through hollow ear bars. In quiet the [da] was presented at
75 dBA, and the noise condition the [da] was presented at
75 dBA with the noise at 65 dBA. Speech tokens were presented
with a 60ms ISI. Responses were differentially amplified with a
gain of 500 and filtered from 10 to 8000 Hz by 2 Grass P511
amplifiers (Grass Technologies, West Warwick, RI), digitized at
33.333 kHz by an MCC A/D board (Measurement Computing
Corporation, Norton, MA), and then saved to second computer
running a custom MATLAB acquisition program. The MCC
board received triggers from the D/A converter to mark stimu-
lus onsets. Responses were epoched from −40 to 190ms (re:

Figure 2. A schematic illustrating the recordings collected from the animal

component of the study. Extracellular EEG was recorded in vivo from several

sites in the central nucleus of inferior colliculus. Each animal subject is repre-

sented by a column, and each dot represents a single recording from that sub-

ject, aligned with the best frequency response of that site. In some cases,

multiple penetrations were made in an individual subject that resulted in mul-

tiple recordings from sites with the same best frequency.
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stimulus onset) and high-pass filtered prior to analysis (100Hz
cut-off, 2nd order Butterworth).

In total there were 84 ICc recordings. Surface recordings
were combined from all penetrations within a single subject.
Responses to the 2 polarities were added at the final aver-
aging stage.

Human Component

Subjects
The subjects in the human component were 50 children, ages
3.4–5.2 years (26 female; mean age: 4.5 years, SD = 0.3). All of
the children were native English speakers with no second lan-
guage experience; no parent reported a history of a neurologic
condition or a diagnosis of autism spectrum disorder. Each
child passed a screening of peripheral auditory function (nor-
mal otoscopy, type A tympanograms, and distortion product
otoacoustic emissions > 6 dB above the noise floor from 0.5 to
4 kHz). Additionally, all children had normal click-evoked ABRs
(wave V latency <5.84ms in response to a 100 μs square wave
click presented at 80.4 dB SPL to the right ear). Children
received $10/h and a cute t-shirt for their participation.

Neurophysiological Recording
Children were seated comfortably in an electrically shielded and
sound-attenuated booth (IAC Acoustics) while watching a film
to facilitate a relaxed state. The film was presented at 45 dB SPL
so that the children could listen to it through the left ear, a tech-
nique often used to measure auditory-neurophysiological
responses in children (Cunningham et al. 2000, 2001; White-
Schwoch et al. 2015a; 2015b). The stimuli were delivered mon-
aurally to the right ear at via electromagnetically shielded insert
earphones (ER-3A; Etymotic Research) with an 81ms ISI. In quiet
the [da] was presented at 80 dB SPL, and the noise condition the
[da] was presented at 80 dB SPL with the noise at 70 dB SPL.
Responses were recorded with a BioSemi Active2 system
(BioSemi, Amsterdam, The Netherlands) with an ActiABR mod-
ule into LabView 2.0 (National Instruments Corporation, Austin,
TX). A vertical recording montage was used with CMS/DRL cen-
tered around Fpz, the active electrode at Cz, and the reference on
the right earlobe. Responses were digitized at 16.384 kHz with an
online high-pass filter at 100Hz (first order Butterworth) and
low-pass filtered at 3200Hz (5th order sinc filter).

The BioSemi ActiABR records with a highpass filter at 100Hz.
Our laboratory’s other data in humans and in the animal model
are recorded with open filters. To compare across these record-
ing systems, the BioSemi responses were amplified in the fre-
quency domain for 3 decades below 100Hz, simulating a
recording with open filters. Responses were then bandpass fil-
tered using our standard FFR range, 70–2000Hz (second order
Butterworth, zero phase shift). The responses were segmented
into epochs corresponding to the time window over which a
stimulus is presented. With stimulus onset as 0ms, the time
range for epochs was −40 to 210ms. Epochs were then baseline-
corrected to the prestimulus period. Epochs with any point
amplitude exceeding ±35 μV were rejected as artifact (~10–15%
of recordings; all final recordings comprised 4000 trials).

Behavioral Tests
The Children’s Evaluation of Language Fundamentals, 2nd
Preschool Edition (Pearson, San Antonio, TX) was used to evalu-
ate early language development. In particular, the Phonological
Awareness test evaluated children’s knowledge of and ability
to fluently manipulate the sound structure of spoken language.

The Matrix Reasoning subtest of the Wechsler Preschool
and Primary Scale of Intelligence-III (Pearson) was also admi-
nistered. This provides a measure of nonverbal intelligence
that is used as a control behavioral measure (see Rosen 2003
for a discussion of this issue).

Data Analysis

Animal Component—ICc recordings
Variability: Of interest was the morphological similarity of the
neurophysiological responses across stimulus trials; that is,
how variably is speech represented by midbrain across trials?
Within each ICc recording, the mean of the correlation between
all possible pairs of trials was computed. Correlations were
computed separately over response regions corresponding to
stimulus onset (10ms window), the CV transition (50ms win-
dow), and the vowel (110ms window). This is referred to as the
intertrial variability measure. Please note that because a correl-
ation value is used for variability, a higher number indicates a
less variable (i.e., more consistent) response.

The correlation for responses to the onset, CV transition,
and vowel were computed over windows that differed in size.
To ensure that the size of the analysis window did not bias
results, a complementary sliding window analyses was con-
ducted on the responses. Correlations were run for all possible
pairs of trials across the response time region, with 20-ms
windows and 1ms of overlap. Specifically, the first window
was centered at 0ms (i.e., −10 to 10ms), the second was cen-
tered at 1ms (i.e., −9 to 11ms) and the last was centered at
190ms (i.e., 180–200ms). As above, a higher number indicates
a less variable (i.e., more consistent) response.

Jitter: In addition, capitalizing on the high SNR offered by ICc
recordings, the mean timing difference, or jitter, between all
possible pairs of trials was computed. This jitter was calculated
using a cross-correlation; that is, 2 trials were shifted in time
relative to each other (range of lags ± 7ms) to determine the
lag at which the correlation between the 2 trials reaches its
maximum. The absolute value of the lag was used for statistical
purposes. Once again this procedure was applied separately
over response regions corresponding to stimulus onset, the CV
transition, and the vowel. This is referred to as the intertrial jit-
ter measure. Please note that because a timing lag is used for
jitter, a higher value indicates means a more jittered response.

The jitter for responses to the onset, CV transition, and
vowel were run over windows that differed in size. To ensure
that the size of the analysis window did not bias results, a com-
plementary sliding window analyses was conducted on the
responses. Cross-correlations were run for all possible pairs of
trials across the response time region, with 20-ms windows
and 1ms of overlap. Specifically, the first window was centered
at 0ms (i.e., −10 to 10ms), the second was centered at 1ms (i.e,
−9 to 11ms) and the last was centered at 190ms (i.e., 180–
200ms). For each window, the absolute value of the lag that
achieved the maximum correlation was determined, and the
mean of these values across windows and all possible pairs of
trials was determined as the intertrial jitter. As above, a higher
number indicates a more jittered response.

It should be noted that our method for computing jitter dif-
fers somewhat from approaches in single-unit studies, which
typically involves taking the standard deviation or coefficient
of variation of spike timing (e.g., Mainen and Sejnowski 1995).
We chose our analysis approach because we wanted to hew as
closely as possible to the techniques used in human neuro-
physiological studies, which require subaveraging because of
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the low SNR of scalp recordings, while still capitalizing on the
high SNR of the IC recordings. Moreover, because we are com-
paring intracollicular responses to broadband population
responses in humans, we did not want to bias calculations on
our near-field responses to the spiking activity.

Phase-locking factor: For the ICc recordings, we supplemented
our variability and jitter analyses by calculating the intertrial
phase-locking factor (PLF) in response to the [da] in quiet and
noise. The advantage of the PLF approach is that it provides
time- and frequency-specific information about the variability
of extracellular activity. An additional advantage is that this
analysis is agnostic to the amplitude of the response.
Specifically, the PLF quantifies the consistency of the phase of
the response in discrete time–frequency bins. Thus, this ana-
lysis allowed us to infer if the variability and jitter effects were
driven by responses to specific frequency bins (such as the
response to the fundamental frequency or first formant).

PLF was calculated for each ICc response in quiet and noise.
A sliding window analysis was used with 40ms bins run across
the response epoch (midpoints were 0–170ms re stimulus
onset). The phase of responses to each polarity was maintained
(this is analogous to adding response to alternating polarities,
as indicated above). The frequency spectrum of each bin was
calculated with a fast Fourier transform (Hanning window), and
normalized to unit vectors at each frequency point, thus avoid-
ing any bias of response amplitude. The unit vectors were then
averaged, and the length of the resulting vector is the PLF.
Mean PLFs were calculated in 20Hz bins centered on the funda-
mental and integer harmonics (100–2000Hz) for responses to
the CV transition (20–70ms) and the vowel (70–170ms).
Because the response to the onset is a transient we do not
anticipate phase-locking statistical analyses of PLFs were there-
fore limited to the CV transition and vowel.

Animal Component—Surface Recordings
Responses recorded at the surface did not have sufficient SNR
to analyze single sweeps. Thus, we used a subaveraging tech-
nique our group has used in human scalp recordings (White-
Schwoch et al. 2015a; 2015b) and that was used in the human
component of this study. The technique involves randomly
computing, and then correlating, 2 subaverages. Each subaver-
age comprised 750 stimulus repetitions because the animal
with the fewest recordings had a total of 1500 stimulus repeti-
tions recorded at the surface. This procedure is performed 300
times, each time randomly selecting 2 different subaverages
and calculating the mean of each of those correlations. Once
again this procedure was applied separately over response
regions corresponding to stimulus onset, the CV transition, and
the vowel. This is referred to as the surface intertrial variability
measure.

Human Component– Surface Recordings
A procedure identical to that used for animal surface record-
ings was used to compute the intertrial variability in human
scalp recordings. In this component of the study, subaverages
comprised 2000 trials.

Statistical Approach

Prior to statistical analyses we applied a number of transforma-
tions to the raw data values so that we could analyze them
with the general linear model. Because the distribution of best
frequencies was non-normal, we transformed it into a log scale.
Intertrial variability was calculated using Pearson correlation

coefficients (r’s). The r distribution is not normal (it has a
restricted range from 0 to 1) and so is not appropriate for statis-
tical analysis under the general linear model. We therefore
transformed these to Fisher z correlation values (Cohen et al.
2003); this increases the “spread” of the data, especially as r
nears 1, and normalizes it. As with r, larger values of z indicate
stronger correlations. Finally, we took the absolute value of our
intertrial jitter calculations. The jitter between 2 trials could
arbitrarily be positive or negative (a given trial could be earlier
or later than the reference trial); we were interested in the mag-
nitude of timing variability, not its direction.

The first set of analyses examined the extent to which inter-
trial variability and jitter vary across response time region
(onset, CV transition, vowel), listening condition (quiet vs. noise),
and their interactions, across animal ICc, animal surface, and
human scalp recordings. We used mixed-effects modeling to
accomplish this. Mixed-effects models are a variant of the gen-
eral linear model that allow the simultaneous evaluation of fixed
factors (e.g., stimulus time region and listening condition) and
random factors (e.g., individual subjects). The advantage of
mixed-effects models is that they allow us to analyze effects
across a different number of levels for certain parameters; differ-
ent animals had different numbers of ICc recordings (ranging
from 5 to 10 recordings per condition). Additionally, we had up
to 10 ICc recordings from each animal but only one surface
recording per condition. The mixed-effects models allowed us to
include subjects as a factor so that we could model recording
site on a within-subject basis, and are reported similarly to con-
ventional ANOVAs, with η2 as effect size. By convention, η2 ≥
0.01 is considered a “small” effect, η2 ≥ 0.06 is considered a
“medium” effect, and η2 ≥ 0.26 is considered a “large” effect
(Cohen 1988). PLFs for the ICc recordings were compared with a
repeated-measures analysis of variance across the twenty fre-
quency bins, covarying for the BF of each site.

We also conducted 2 multivariate, hierarchical regressions.
Multivariate regression examines whether a set of independent
variables, in combination, predict a single dependent variable.
Hierarchical regression models the contributions of these vari-
ables in steps, and determines if specific measures explain add-
itional variance after controlling for the contribution of one set
of measures. The first regression tested the relationship
between intertrial variability in the IC and jitter after control-
ling for tuning of the recording site and stimulus parameters.
The second regression tested the relationship between inter-
trial variability at the scalp and language skills in children after
controlling for demographic factors and intelligence.

Results
Animal Component

In total, 84 ICc recordings in response to [da] in quiet and in
noise were collected across 10 animals. Tonotopic sites for each
subject are summarized in Figure 2, with each dot representing
one recording. The BF of that recording site is indicated on the
ordinate; in some cases, several penetrations were made in an
individual subject, resulting in multiple recordings from sites
with an identical BF.

As expected, far-field recordings (animal surface and human
surface) did not have sufficient SNR to analyze single trials. In
contrast, near-field (animal ICc) recordings offered sufficient
SNR to analyze single trials. The analysis approach therefore
capitalized on this favorable SNR to evaluate trial-to-trial vari-
ability and jitter in neural coding. Several trials from an
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individual ICc recording are illustrated on Figure 1A, which
illustrates that each trial in the near-field recordings is inter-
pretable (contrast this to Fig. 1B, which shows an equivalent
number of trials collected at the human scalp).

Figure 3 shows the grand average responses to [da] in quiet
and noise, averaged across all 84 ICc recordings (top), all 10 ani-
mal surface recordings (middle), and all 50 human surface
recordings (bottom). Broadly, responses from ICc, surface, and
scalp were morphologically similar. All show a strong periodic
component that corresponds to phase-locked activity in
response to the fundamental frequency of the stimulus
(100Hz). When viewed as grand averages across all subjects,
responses in humans show the most fine structure (the high-
frequency components between each major peak in the
response). The animal surface recordings resemble the human
scalp recordings more strongly than the ICc recordings; this is
expected because the ICc recording is a near-field response
whereas the surfaces responses are far-field and more analo-
gous to scalp recordings. Across all recording sites, averaged
responses in noise tended to be smaller and later than
responses in quiet.

ICc Responses to Dynamic Speech Features in Quiet and
Noise are Variable and Jittered

Responses from a representative ICc recording are illustrated in
Figures 4 (speech in quiet) and 5 (speech in noise), broken down
by time regions of the response; twenty randomly selected
responses are overlaid with heat maps illustrating intertrial
variability and jitter. As may be seen in Figure 4, responses are
essentially similar across trials in the quiet condition. In
Figure 4A, a negative deflection is apparent in each response at
about 9ms, which corresponds to the onset of the stimulus;
heat maps are shown in Figure 4B,C, showing the low variabil-
ity and jitter, respectively, across trials in response to the onset.
In Figure 4D, the response to the CV transition is illustrated,
and in each trial phase-locking to the fundamental frequency
of the stimulus becomes apparent; heat maps show that the
variability and jitter (Figs 4E,F, respectively) are lower for this
response region than the preceding. Finally, this figure (Fig. 4G)
illustrates the response to the vowel where a striking similarity

is observed across response trials, and variability and jitter
reach their nadirs (Figs. 4H,I).

Contrast this to Figure 5, which is organized analogously
and presents the same animal’s response to speech in noise,
recorded from the same site in ICc. In Figure 5A, it is extremely
difficult to discern consistent onset response timing across
trials; the onset response is essentially gone, and the heat
maps show that the response is completely variable and jit-
tered (Figs 5B,C). In Figure 5D, phase-locking begins to emerge
but the responses are substantially more variable and jittered
than the corresponding response in quiet (Fig. 4D). The heat
maps also show that the response is somewhat less variable
and jittered than the onset response in noise (Figs 5E,F). Finally,
the response to the vowel in noise is shown in Figure 5G—
phase-locked activity is apparent, however, these responses
are still more variable and jittered (Figs 5H,I) than in quiet.

Similar observations were made for all animal ICc responses
across tonotopic sites. In the sections that follow, these obser-
vations are tested statistically across the subject population.
These results are illustrated in Figure 6A, with quiet responses
in black and noise responses in red (recall these are Fisher’s
z-transformed correlation coefficients, so higher numbers are
less variable across trials).

Responses to the vowel were less variable than responses to
the consonant transition, both of which were less variable than
responses to the onset burst (main effect of time region: F
(2,21.815) = 438.212, P < 0.001, η2 = 0.976). When background
noise was added, responses were more variable than they were
in quiet (main effect of condition: F(1,9.251) = 137.242, P < 0.001,
η2 = 0.937). This noise degradation was exacerbated in response
to dynamic speech features, meaning that the responses to the
onset and consonant transition were relatively more variable,
compared with the vowel response, in noise than they were in
quiet (condition × time region interaction: F(2,19.214) = 56.560,
P < 0.001, η2 = 0.855). Onset response variability in noise was
particularly high.

Variability calculations were run over response time regions
that differed in size: the onset analysis window was 10ms long,
the CV transition analysis window was 50ms long, and the
vowel analysis window was 110ms long. To ensure that these
results were not biased by differences in the size of the analysis
window, a sliding window correlation analysis was performed
on the responses. All possible pairs of trials were correlated in
the sliding window analysis, which calculates the correlation
between a pair of trials for 20ms bins running across the
response length. Results are illustrated as Fisher’s z correlation
values in Figure 7A. The pattern of results is consistent with
those shown in Figure 6A, where responses in quiet are more
consistent than responses in noise, responses to the vowel are
more consistent than responses to the CV transition and onset,
and noise dramatically increases variability in response to tran-
sient speech features (higher values on the ordinate reflect
more consistent responses). Figure 7C illustrates the effect sizes
(Cohen’s d) comparing variability in quiet versus noise across
the response (each effect size reflects the magnitude of the dif-
ference in variability between corresponding 20-ms bins in
quiet and noise). Consistent with the effects discussed above
and illustrated in Figure 6A, noise has a larger effect on
response variability in response to transient, rather than static,
speech features. Remarkably, these patterns are observed in
individual responses, which are illustrated in Figure 7B (quiet)
and Figure 7D (noise)—in both cases, despite disparities across
recordings in terms of the degree of response variability, the
vast majority of responses show the patterns illustrated in

Figure 3. Grand average responses to the speech sound [da] are shown in quiet

(black) and noise (gray) for (A) all ICc recordings (N = 84); (B) all surface record-

ings from the animal model (N = 10); and (C) all human scalp recordings

(N = 50).
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Figures 6A and 7A. Specifically, responses that tend to be the
most consistent show greatest response stability for the vowel
portion of the response, while the more variable responses
show reduced response stability for the onset and CV transition
features.

The intertrial jitter was computed as the mean of the abso-
lute value of the lags between all pairs of trials, and followed
an identical pattern of results as response variability. These
results are illustrated in Figure 6B, with larger intertrial timing
variability indicated by a larger degree of jitter (note that larger

Figure 4. ICc responses to speech in quiet are illustrated from a representative animal subject; this is the same subject whose response in noise is illustrated in

Figure 5. Shown are several single trials overlaid, intertrial variability, and intertrial jitter in response to the onset (A, B, C), the consonant–vowel transition (D, E, F),

and the vowel (G, H, I). For each time region, several single sweeps are overlaid—each is shown as a gray trace (A, D, G). Next, a heat map illustrates the intertrial cor-

relation between pairs of trials; each row and column represents a single trial and the heat map illustrates the correlation between those 2 trials, with white indicat-

ing a low correlation and black indicating a high correlation (B, E, and H). Finally, heat maps show the intertrial jitter between corresponding pairs of trials, with

white representing zero jitter and black showing a greater timing difference between each pair (absolute value; C, F, and I).

Figure 5. ICc responses to speech in noise are illustrated from a representative animal subject; this is the same subject whose response in quiet is illustrated in

Figure 4. This figure is organized identically to Figure 4.
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Figure 6. Intertrial correlation and jitter are shown across time regions of the response (onset, consonant–vowel transition, and vowel) and conditions (quiet and

noise) for the animal (A–C) and human (D) components of the study. (A) The intertrial correlation is shown for ICc recordings. (B) The intertrial jitter is shown from

ICc recordings. (C) The intertrial correlation is shown from surface recordings. (D) In humans, a similar pattern of intertrial correlations is observed in scalp record-

ings. Namely, responses in quiet (black) are more correlated across trials than responses in noise (gray), and responses to the vowel are more correlated than

responses to the consonant–vowel transition, which are in turn more correlated than responses to the onset. The addition of background noise exacerbates the vari-

ability in response to the onset and consonant–vowel transition. This effect is statistically identical to that observed in the animal model (panels A, C). Illustrated are

means with error bars ±1 standard error of the mean.

Figure 7. To complement the correlation analyses over discrete time regions of the responses, a sliding-window analysis was conducted. Correlations were calculated

between all possible pairs of trials for 20-ms windows running across the response. (A) Mean intertrial correlations are illustrated for responses in quiet (black) and

noise (gray), with the shaded area showing ±1 standard error of the mean. Higher values on the ordinate reflect stronger correlations, hence less variable responses.

Each point on the abscissa is the midpoint of the window the correlation was conducted on (e.g., the point at time 20ms is the correlation on a window from 10 to

30ms). The pattern of intertrial correlations clearly reproduces the pattern illustrated in Figure 6A, with responses in quiet less variable than responses in noise,

responses to the vowel less variable than responses to the onset or CV transition, and noise more adversely affecting response variability in response to the onset

and CV transition than in response to quiet. This pattern of results was evident in all 84 recordings from each site across animals in quiet (B) and noise (D).

Additionally, this pattern of results is seen when comparing effect sizes (Cohen’s d) between quiet and noise (C); each point shows the effect sizes of the difference in

correlations between quiet and noise.

Mechanisms of Response Variability White-Schwoch et al. | 5103



values are lower on this ordinate). Namely, the response to the
onset was more jittered than the response to the consonant
transition, which was in turn more jittered than the response
to the vowel (main effect of time region: F(2,19.467) = 321.270,
P < 0.001, η2 = 0.971). When background noise was added
the responses also became more jittered (main effect of
condition: F(1,9.148) = 166.935, P < 0.001, η2 = 0.948), but once
again this effect was exacerbated for responses to the onset
and consonant transition (condition × time region interaction:
F(2,18.849) = 49.659, P < 0.001, η2 = 0.840), with the most jitter seen
in response to the onset in noise.

Like the variability calculations, jitter was computed over
response time regions that differed in size (see above). To
ensure these results were not biased by differences in the size
of the analysis window, a sliding-window analysis was con-
ducted. Specifically, the timing lag (absolute value) between all
possible pairs of trials was calculated over a sliding window,
which computes the timing difference between a pair of trials
for 20ms bins running across the response length. Results are
illustrated in Figure 8A. The pattern of results is consistent
with those shown in Figure 6B, where responses in quiet are
less jittered than responses in noise, responses to the vowel
are less jittered than responses to the CV transition and onset,
and noise dramatically increases jitter in response to transient
speech features (lower values on the ordinate reflect less jit-
tered responses). Figure 8C illustrates the effect sizes (Cohen’s
d) comparing jitter in quiet versus noise across the response
(each effect size reflects the magnitude of the difference in jit-
ter between corresponding 20-bins in quiet and noise).
Consistent with the effects discussed above and illustrated in
Figure 6B, noise has a larger effect on jitter in response to tran-
sient, rather than static speech features. These patterns are
observed in individual responses, illustrated in Figure 8B (quiet)
and Figure 8D (noise). In both cases, despite disparities across
recordings in terms of the degree of response jitter, the vast
majority show the pattern illustrated in Figures 6B and 8A.

Most of the intertrial variability calculations for ICc record-
ings in the onset time region were extremely low—50% fell

below 0.1 (Fisher’s z-transformed correlation coefficient; com-
pared with 1.8% of CV transition responses and 0.01% of vowel
responses). To ensure this skew did not drive the effects, the
intertrial variability and jitter were reanalyzed, comparing only
responses to the CV transition and vowel. Identical patterns
were observed. The response to the transition was more vari-
able than the response to the vowel (main effect of time region:
F(1,11.183) = 194.319, P < 0.001, η2 = 0.929), the response in noise
was more variable than the response in quiet (main effect of
condition: F(1,10.164) = 133.826, P < 0.001, η2 = 0.929), and noise
exacerbated the variability in response to the CV transition
(condition × time region interaction: F(1,14.124) = 33.071,
P < 0.001, η2 = 0.701). In addition, the response to the transition
was more jittered than the response to the vowel (main effect
of time region: F(1,13.055) = 64.694, P < 0.001, η2 = 0.832), the
response in noise was more jittered than the response in quiet
(main effect of condition: F(1,9.239) = 86.865, P < 0.001,
η2 = 0.904), and the jitter was exacerbated for the response to
the transition in noise (condition × time region interaction:
F(1,14.280) = 11.744, P = 0.004, η2 = 0.451).

Intertrial Variability Reflects Timing Jitter

ICc responses followed similar patterns in terms of how stimu-
lus features affect representational variability and timing jitter.
We next tested the hypothesis that variable responses in time
(jittered) are also variable in morphology. Indeed, the 2 mea-
sures were strongly correlated across all recording sites, time
regions, and conditions (r(502) = −0.856, P < 0.001). This is illu-
strated on Figure 9.

To ensure that this relation held irrespective of the tonotopy
of the recording site, time region of the response, or condition,
a multistep hierarchical regression was conducted to predict
intertrial variability from the intertrial jitter. On the first step,
the BF response of the site accounted for 16.1% variance in
intertrial variability (F(1,502) = 96.004, P < 0.001). The addition
of condition and time range on the second step accounted
for an additional 44% of variance in intertrial variability

Figure 8. To complement the jitter analyses over discrete time regions of the responses, a sliding-window analysis was conducted. This figure is organized analo-

gously to Figure 7, illustrating the intertrial jitter patterns show in Figure 6B. Note that the absolute value of the jitter was calculated, and here higher values on the

ordinate reflect more jittered responses.
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(F(2,500) = 275.609, P < 0.001). On the third step intertrial jitter
was added, and this factor uniquely accounted for an add-
itional 19.5% variance in intertrial variability (F(1,499) = 478.034,
P < 0.001; βjitter = −0.712, t = −21.864, P < 0.001). Thus, irrespect-
ive of recording site, time region, or noise condition there is a
consistent and robust relationship between timing jitter and
representational variability (total R2 = 0.796, F(4,499) = 486.998,
P < 0.001; see Table 1 for the full regression results).

In the multiple regression, the unstandardized beta coeffi-
cient (β) of the intertrial jitter was −0.455 (log scale; standard
error, 0.021). The beta refers to the coefficient of this term in
the regression equation, and shows the influence of a change
in one unit of the independent variable (jitter) on the depend-
ent variable (variability). For perspective, this means that
across laminae, stimulus features, and condition, every 1ms of
timing jitter increases the response variability (i.e., decreases
the correlation value) by 0.337 (Pearson’s r).

Variability of Extracellular Activity Across Frequencies
Shapes Intertrial Variability and Jitter

The preceding analyses of variability and jitter were con-
ducted on responses in the time domain, meaning they con-
sidered extracellular activity across frequencies. This raises
the question of whether certain frequencies in the response
shape these patterns of variability. From a neurophysiological
standpoint, if this variability was biased to a certain frequency
band it could suggest that these patterns are driven by specific
processes. For example, if variability patterns were restricted
to neural activity occurring below 300 Hz it might suggest they
are driven by the local field potentials, or the input to ICc.
From an acoustic-phonetic standpoint, if variability patterns
were restricted to specific frequencies it could indicate which
stimulus features drive these effects. For example, if these
variability patterns were restricted to activity around 700 Hz it
might suggest they were driven by neural coding of the first
formant (Fig. 1).

To tease apart these possibilities we did a phase-locking
analysis. This analysis quantifies the consistency of the phase
of the extracellular activity at specific time–frequency bins in
the response. Thus, we can determine how consistently specific
frequency bandwidths in the speech stimulus are coded for
both the CV transition and the vowel. (Because the response to
the onset burst is a transient we do not expect phase-locking to
emerge). The phase consistency of the response is quantified
with a “phase-locking factor” (PLF) that ranges from 0 (com-
pletely variable) to 1 (completely consistent). Previous work in
humans show individuals with poor listening-in-noise skills,
such as older adults, have diminished phase-locking in
response to speech (Anderson et al. 2012; Ruggles et al. 2012).
Additionally, work in humans shows this analysis often aligns
with response variability in the time domain (Tierney and
Kraus 2013; Woodruff Carr et al. 2015).

Grand-averaged response phase-locking is illustrated in
Figure 10. These time–frequency plots use color to indicate the
strength of phase-locking (ranging from blue for low PLFs to red
for high PLFs). Figure 10A shows the response in quiet; the PLF
plot resembles the spectrogram of the stimulus that is illu-
strated in Figure 1. The strongest phase-locking is observed at
the fundamental frequency, and diminishes up to higher fre-
quencies. Nevertheless, reliable phase-locking is observed out
to very high frequencies—perhaps as high as 2000 Hz. This is
consistent with our previous observations in speech-evoked
ICc activity, which showed that some sites exhibit these high-
frequency phase-locked responses (Warrier et al. 2011).
Figure 10B shows the grand-average response in noise. Overall
phase-locking is smaller, and absent at the highest frequencies.
Additionally, phase-locking is substantially diminished in
response to the CV transition, consistent with the aforemen-
tioned finding that response variability and jitter are higher for
the CV transition in noise relative to quiet. This is further illu-
strated in Figure 10C, which is a difference plot of the top 2
panels (purple indicates time–frequency points where PLFs
were higher in quiet than in noise). The strongest difference is
observed in response to the CV transition, and smaller differ-
ences are seen in high frequencies in the vowel.

Figure 11 shows mean PLFs for the response to the CV
Transition (Panel A) and vowel (Panel B) in quiet (black) and
background noise (gray). Although Figure 10 shows a burst of
energy corresponding to stimulus onset, we do not expect
phase-locking in response to a transient burst and so restricted
our statistical analyses to the transition and vowel regions. The

Figure 9. In ICc, intertrial correlations relate strongly to intertrial timing jitter:

the more jittered a response across trials, the less correlated it is across trials.

This holds across all recording sites, time regions of the response (onset, con-

sonant–vowel transition, vowel) and conditions (quiet and noise). Each dot

represents one “pair” of variability and jitter calculations, and this figure illus-

trates every calculation for the 10 subjects, 3 time regions of the response, and

2 conditions. Note that the abscissa is on a logarithmic scale to make it easier

to see the relation to variability, but that the raw values (ms) are indicated at

each tick mark.

Table 1 In ICc, intertrial variability reflects intertrial timing jitter
across tonotopic sites, response time regions, and conditions

Predictor ΔR2 β

Step 1 0.161
Best frequency 0.401**

Step 2 0.440
Best frequency 0.401**
Time region −0.477**
Condition 0.461**

Step 3 0.195
Best frequency 0.254**
Time region 0.119**
Condition −0.060*
Intertrial jitter −0.712**

Total R2 0.796

Multiple regression results of factors predicting intertrial variability.

*P = 0.030, **P < 0.001.
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mean PLFs are plotted at each frequency, and the insets show
the effect sizes of the PLF difference between quiet and noise.
As is clear from the line plots and Figure 10, PLFs diminished as
the frequency increased: phase-locking was strongest at 100Hz
and weakest at 2000Hz (main effect of frequency: F
(19,63) = 19.654, P < 0.001, η2 = 0.195). Overall, phase-locking
was stronger in quiet than in noise (main effect of condition: F
(1,81) = 10.256, P = 0.002, η2 = 0.112). Additionally, phase-locking
was slightly stronger in response to the vowel than the CV
transition (main effect of time region: F(1,81) = 4.050, P = 0.047,
η2 = 0.048). As illustrated in Figure 11, although responses
across frequency were more variable in noise and for the
response to the CV transition, there were nuances to these
effects. For example, low-frequency phase-locking was more
degraded by background noise for the CV transition than for
the vowel response; higher frequencies were equivalently
affected by background noise (frequency × condition × time
region interaction, F(19,63) = 3.202, P < 0.001, η2 = 0.491).

Thus, patterns of phase-locking across listening conditions
and time regions of the response align with patterns of inter-
trial variability and intertrial jitter. But does this mean that
variability across frequencies shapes variability and jitter pat-
terns? We tested this hypothesis by correlating PLFs at individ-
ual frequencies (integers from 100 to 2000Hz) with intertrial
variability and jitter results, covarying for the BF of each ICc
recording site. We performed 4 sets of correlations—responses
to the CV transition and vowel for responses in quiet and noise.
As reported in Table 2, we consistently observed that stronger

PLF’s were associated with less variable responses (higher cor-
relation coefficients) and less jittered responses. In quiet these
correlations spanned the entire range of phase-locking (up to
2000Hz). In background noise these correlations tapered off
around 1000 Hz, but as shown in Figures 10B and 11 there is a
steep drop in phase-locking in the higher frequencies; we think
this floor effect accounts for the absence of correlations with
variability and jitter.

Together, these results suggest that extracellular activity is
variable and jittered across a wide frequency band.
Specifically, variability of the phase of extracellular activity up
to 2000 Hz relates to the intertrial variability and intertrial jit-
ter recorded at that site. Additionally, patterns of response
variability and jitter across time regions of the speech syllable
and listening conditions are reproduced by the phase-locking
analysis. Because our goal is to see if ICc activity aligns with
population activity recorded at the scalp, we next tested
response variability patterns recorded at the epidural surface
in the guinea pig. We hypothesized that the pattern of
response variability would be similar to the local activity pat-
terns observed in ICc.

Surface Responses to Dynamic Speech Features in Quiet
and Noise are Variable

Grand average scalp-recorded responses of the guinea pig sur-
face responses to the speech sound [da] in quiet and in noise
are shown in Figure 3B. Animal surface recordings did not have
single-trial resolution and so the intertrial jitter measure could
not be calculated. At the surface recording, there was an identi-
cal pattern of results as a function of time region of the
response and condition (Fig. 6C) as was observed in the ICc
recordings.

In particular, responses to the vowel were more consistent
than responses to the CV transition, which were in turn less
variable than responses to the onset (main effect of time
region: F(2,18) = 124.594, P < 0.001, η2 = 0.933). In addition,
response to speech in quiet were less variable than responses
to speech in noise (main effect of condition: F(1,9) = 32.921,
P < 0.001, η2 = 0.785). This noise degradation was exacerbated in
response to transient and dynamic speech features, meaning
that the responses to the onset and consonant transition were
more variable in noise than they were in quiet, relative to the
vowel (condition × time region interaction: F(2,18) = 11.950,
P < 0.001, η2 = 0.570).

Human Component

Grand average scalp-recorded responses of the 50 children to
the speech sound [da] in quiet and in noise are shown in
Figure 3C. Again, human recordings did not have single-trial
resolution and so intertrial jitter could not be calculated in this
cohort.

Human Scalp Responses to Dynamic Speech Features in
Quiet and Noise are Variable

The human scalp responses showed an identical pattern of
intertrial variability results as a function of time region of the
response and condition as was observed in the animal record-
ings (both in ICc and surface recordings; Fig. 8). Responses to
the vowel were less variable (higher intertrial correlation
values) than response to the CV transition, which were in turn
less variable than responses to the onset (main effect of time

Figure 10. Phase-locking factor (PLFs) plots for responses to speech in quiet (A)

and noise (B), averaged across all ICc recordings. The PLF is calculated for each

time–frequency bin in the response and is illustrated on a colorscale, ranging

from blue (0, complete phase variability) to red (1, complete phase consistency).

The strongest phaselocking is observed in low frequencies, in response to the

vowel, and in quiet. Background noise diminishes phase-locking, especially in

response to the CV transition. Although PLFs decrease with ascending fre-

quency, in quiet they are observed up to 2000Hz. These observations are con-

firmed by subtracting PLFs in quiet and noise at corresponding time–frequency

bins (C). In the difference plots, deep purple indicates points where PLFs were

higher in quiet than in noise.
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region: F(2,98) = 87.976, P < 0.001, η2 = 0.642). In addition,
responses to speech in quiet were less variable than responses
to speech in noise (main effect of condition: F(1,49) = 76.992,
P < 0.001, η2 = 0.611). This noise degradation was exacerbated in
response to transient and dynamic speech features, meaning
that the responses to the onset and consonant transition were
more variable in noise than they were in quiet, relative to
the vowel (condition × time region interaction: F(2,98) = 4.856,
P = 0.010, η2 = 0.090).

Comparisons Between Animal and Human Components

Patterns of Intertrial Correlations are Similar Between Animal ICc,
Animal Surface, and Human Scalp Responses
The preceding results independently compared intertrial vari-
ability in responses recorded from animals (ICc and at the sur-
face) and humans (recorded at the scalp). We next tested the
hypothesis that these effects are maintained across species
using a single mixed-effects model.

We found an identical pattern of results across the animal
and human subjects.

Namely, across recording types (animal ICc, animal surface,
and human scalp) responses to the vowel were less variable
than responses to the CV transition, which were less variable

than responses to the onset (F(2,863) = 87.054, P < 0.001,
η2 = 0.170). This effect was equivalent across guinea pigs and
humans (no time region × species interaction, F(2,863) = 0.087,
P = 0.916, η2 < 0.001). In addition, responses in quiet were less
variable than responses in noise (main effect of condition: F
(1,836) = 107.971, P < 0.001, η2 = 0.112). This effect was equiva-
lent across guinea pigs and humans (no condition × species
interaction: F(1,863) = 0.162, P = 0.687, η2 < 0.001). Finally,
responses to the dynamic and transient speech features were
rendered more variable by the addition of background noise
than responses to the vowel (time region × condition inter-
action: F(2,863) = 9.278, P < 0.001, η2 = 0.021). This effect was
equivalent across guinea pigs and humans (no time region ×
condition × species interaction, F(2,863) = 2.925, P = 0.054,
η2 = 0.007). These are illustrated in Figure 6D.

Recall that the ICc onset correlations were skewed towards
zero. Therefore, these analyses were rerun only comparing
responses to the vowel and CV transition. Essentially the same
pattern of results emerged. Across species, responses to the
vowel were less variable than responses to the CV transition
(main effect of time region: F(1,575) = 14.213, P < 0.001,
η2 = 0.024; no time region × species interaction: F(1,575) = 0.129,
P = 0.720, η2 < 0.001). Once again, responses in quiet were less
variable than responses in noise (main effect of condition:

Figure 11. Mean phase-locking factors (PLFs) are plotted at each frequency (integers from 100–2000Hz) in response to the CV transition (A) and vowel (B) in quiet

(black) and background noise (gray). These reinforce the observations from Figure 10, namely, that PLFs are lower in noise, lower for the response to the CV transition,

and disproportionately lower for the response to the CV transition in noise. The insets show the effect sizes comparing PLFs at each frequency between quiet and

noise. Each frequency is indicated by a bar in ascending order (top and bottom panels are organized identically). The strongest quiet-to-noise split is in response to

the fundamental frequency (100Hz) in the CV transition. Slightly larger effects are also seen around the first formant in both responses (~700–800Hz). For the CV tran-

sition, the effect of noise slightly attenuates with increasing frequency, likely because PLFs are already lower to begin with. In contrast, the effect of noise increases

with higher frequencies in response to the vowel. Error bars ±1 standard error of the mean.
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F(1,575) = 29.332, P < 0.001, η2 = 0.049); no condition × species
interaction: (F(1,575) = 0.884, P = 0.347, η2 = 0.002). However, the
interaction between condition and time region was no longer
statistically reliable (no time region × condition interaction: F
(1,575) = 1.092, P = 0.296, η2 = 0.002) but, importantly, this was
the case for responses in guinea pigs and in humans, reinfor-
cing the consistency of response patterns across species (no
species × time region × condition interaction: F(1,575) = 0.063,
P = 0.802, η2 < 0.001).

Despite an Overall Similarity, Distinct Recording Sites Exhibit
Distinct Response Patterns
While the patterns of results are statistically similar, examin-
ation of Figure 6 also shows differences between recording sites.
The clearest difference is between the near-field (ICc; Figs 6A,B)
and far-field (animal and human surface; Figs 6C,D) sites. In the
near-field sites, there is a much more dramatic effect of back-
ground noise on variability and jitter in response to the onset
than at the surface. The overall pattern of results is the same
(onset degradation is greater than CV transition degradation,
which is greater than vowel degradation) but the extent to which
noise increases variability in response to the onset is substan-
tially greater in ICc. The surface recordings reflect dipoles from a
much greater set of generators, including more peripheral brain-
stem structures (Melcher et al. 1996). As a population this sys-
tem may have a more resilient onset coding in noise, and our
previous work suggested that noise exerts a progressively larger
degradation as information ascends the auditory pathway
(Cunningham et al. 2002). In contrast, responses to periodic fea-
tures such as the vowel were largely similar across near- and
far-field responses. We speculate that responses at the surface/
scalp reflect sustained phase-locking within IC (Rees and Møller
1983; Rees and Palmer 1988) that may explain why the patterns

of response variability for these periodic features are more simi-
lar between near-field and far-field recordings.

We also observe discrepancies between recording sites with
respect to the magnitude of the correlations. The range of cor-
relations in the animal surface recordings (Fig. 6C) is higher
than in the ICc recordings or human scalp recordings
(although, again, the overall pattern is similar). This may be
attributable to differences in electrode placement. The elec-
trode in the animal surface recordings was on the surface of
the dura mater, whereas the electrode in the human recordings
was on the scalp.

In Humans, Intertrial Variability Relates to Language Development
Previous work has found that children with more variable FFRs
to speech have poorer literacy skills than their peers (Hornickel
and Kraus 2013). White-Schwoch et al. (2015b) reported that
intertrial variability in response to speech in noise, when taken
in concert with additional response properties, was strongly
predictive of prereading skills.

Here, we found a similar relationship. In a 2-step regression,
age, sex, and nonverbal intelligence accounted for 21.8% of
variance in phonological processing (F(3,46) = 4.265, P = 0.010).
When the intertrial variability for the response in noise was
added to the model, it accounted for an additional 16.5% of
variance (F(1,45) = 12.029, P = 0.001; total R2 = 0.383, F
(4,47) = 6.973, P < 0.001; βcorrelation = 0.424, t = 3.468, P = 0.001;
Table 3). Thus, independent of demographic factors, we observe
a systematic link between the variability of the response to
speech in noise and early language development.

Discussion
Here we show that timing jitter is a mechanism that contri-
butes to the (un)reliability of neural coding in auditory

Table 2 The phase-locking factor (PLF) calculated at each frequency was correlated to the intertrial variability and intertrial jitter correspond-
ing to that recording (CV transition or vowel; quiet or noise). Partial correlation coefficients are reported, controlling for the tuned region of e-
ach recording site

Frequency (Hz) Quiet Noise

CV Transition Vowel CV Transition Vowel

Variability Jitter Variability Jitter Variability Jitter Variability Jitter

100 0.643*** −0.561*** 0.381*** −0.638*** 0.595*** −0.368*** 0.384*** −0.705***
200 0.647*** −0.549*** 0.454*** −0.451*** 0.489*** −0.491*** 0.602*** −0.480***
300 0.493*** −0.503*** 0.340** −0.380*** 0.436*** −0.389*** 0.372*** −0.328***
400 0.513*** −0.443*** 0.533** −0.405*** 0.501*** −0.456*** 0.386*** −0.167
500 0.397*** −0.413*** 0.360*** −0.306** 0.317** −0.369*** 0.381*** −0.411***
600 0.387*** −0.347*** 0.376*** −0.415*** 0.314** −0.383*** 0.406*** −0.360***
700 0.352*** −0.348*** 0.131 −0.333** 0.314** −0.354*** 0.360*** −0.347***
800 0.369*** −0.376*** 0.126 −0.310** 0.297** −0.428*** 0.303** −0.367***
900 0.386*** −0.387*** 0.373*** −0.303** 0.066 −0.076 0.244* −0.318**
1000 0.350*** −0.366*** 0.455*** −0.488*** 0.169 −0.365*** 0.340** −0.369***
1100 0.440*** −0.354*** 0.309** −0.439*** 0.215 −0.190 0.176 −0.228*
1200 0.445*** −0.293** 0.391*** −0.430*** 0.028 −0.139 0.179 −0.274*
1300 0.487*** −0.383*** 0.340** −0.378*** 0.116 −0.079 0.324** −0.370***
1400 0.263* −0.277* 0.352*** −0.467*** 0.129 −0.185 0.163 −0.387***
1500 0.408*** −0.307** 0.441*** −0.445*** −0.002 0.104 −0.049 0.016
1600 0.223* −0.208 0.478*** −0.388*** 0.149 −0.296** 0.082 −0.014
1700 0.318** −0.249* 0.417*** −0.413*** 0.087 0.043 0.065 −0.139
1800 0.420*** −0.280* 0.361*** −0.341** −0.101 0.143 0.081 0.075
1900 0.195 −0.156 0.249* −0.358*** 0.081 −0.071 0.388 −0.205
2000 0.331** −0.266* 0.330** −0.365*** 0.081 −0.109 0.197 −0.103

*P < 0.05, **P < 0.01, ***P ≤ 0.001.
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midbrain. We tie this variability into variability of the scalp-
recorded FFR in humans, a measure that has been linked to
language abilities in children, suggesting a functional conse-
quence of this variability for language development. Together,
these results support the hypothesis that excessive variability
blurs the neural coding of fine-grained speech features in noise,
which may in turn compromise language development.

This is consistent with the idea that variability in neural
coding compromises the integrity of that coding (Faisal et al.
2008), and the idea that coding subtle temporal cues in sound,
such as interaural time differences or rapidly changing conso-
nants, depends on consistent neural activity (Carr and Konishi
1990; Engineer et al. 2008). This reliability becomes especially
important at the population level, where it has been argued
that synchronized neural activity between units supports vis-
ual object binding (Singer 1999), sound representation in audi-
tory cortex (deCharms and Merzenich 1996), visual-motor
synchrony (Lee et al. 2016), and learning (Hebb 1949; Bi and Poo
2001). Similarly, variability is thought to contribute to poor
evoked responses in human neurophysiological techniques
that operate on a slow timescale, such as cortical evoked
potentials (Arieli et al. 1996) and, on an even slower timescale,
functional magnetic resonance imaging signals (Fox et al. 2006,
2007). Less is known about the sources of variability in the
speech-evoked FFR, but auditory brainstem response studies
suggest that jitter is a factor (Starr et al. 1996, 2003). We show
that this idea extends to the neural coding of speech vis-à-vis
the FFR, and provide a framework to understand variability in
the human FFR through the lens of an animal model.

In particular, we show that speech-evoked activity in ICc is
more variable in response to transient and dynamic sound ele-
ments (onset and CV transition) than in response to static cues
(vowel). The addition of background noise increases this vari-
ability, particularly in response to transient and dynamic cues.
Across all laminae and stimulus features that were tested, this
intertrial variability related to the timing jitter between
responses, suggesting that variability in the timing of neural
coding constrains the precise neural coding of acoustic cues.
These patterns of variability are similar across a wide range of
response frequencies. In addition, patterns of response variabil-
ity across speech elements and conditions were mirrored
between near-field ICc and human scalp recordings; in the lat-
ter, intertrial variability relates to language development.
Taken together with evidence that listeners with poor auditory
processing exhibit variable auditory-neurophysiological
responses to speech, these results suggest that timing jitter at

the level of auditory midbrain contributes to these listening
difficulties.

Timing Jitter Emerges as Variable Scalp-Recorded
Responses

A major finding of this report is that effects of time region
(onset, CV transition, vowel) and background noise are equiva-
lent across tonotopic sites in ICc, and that the relationship
between intertrial variability and intertrial timing jitter holds
across recording sites. Responses were elicited at high sound
levels, well above the threshold of each recording site, which
likely contribute to the weak effects of tonotopy in our data.
Moreover, whole-cell recordings from the awake bat IC suggest
that many IC cells’ synaptic inputs are tuned over at least 2
octaves (Xie et al. 2007). Thus, insofar as cellular response prop-
erties in the bat midbrain generalize to other species, when
considering responses to broadband, spectrotemporally rich
stimuli such as speech presented at high sound intensities,
there may be relatively weak effects of tuning. That said, we
caution that our dataset represents only about the lower third
of tuned laminae in the guinea pig ICc (Malmierca et al. 1995;
see also Schreiner and Langner 1997). Additionally, cochlear
tuning may be sharper in primates (Nelson et al. 2009; Nelson
and Young 2010), and in humans there are complex interac-
tions between frequency and intensity (Plack and Oxenham
1998; Shera et al. 2002), tempering generalization of our results
from the animal model to humans (but see Ruggero and
Temchin, 2005). We also note that midbrain synaptic tuning
can be broader than spiking output (Geis and Borst 2009; Geis
et al. 2011). Future work can explore this issue with respect to
variability across IC laminae more thoroughly by deriving
input-output functions at multiple sound levels.

Our ICc recordings may reflect both presynaptic and postsy-
naptic activity across multiple units (i.e., both local field poten-
tials and spikes) because we did not low or high-pass filter the
responses, and spikes can contribute to high-frequency compo-
nents of extracellular potentials (Buzsáki et al. 2012). There is a
diversity of cell types within ICc (Oliver 2005). Our multiunit
recordings may reflect this diversity. However, recordings from
the central nucleus and dorsal cortex of IC suggest that
response properties may not be correlated to cell morphology
(Tan and Borst 2007; Tan et al. 2007; although there are excep-
tions, Geis and Borst 2013). In fact, neighboring cells in the cen-
tral nucleus that exhibit similar tuning can differ widely in
their evoked response properties (Seshagiri and Delgutte 2007).
Thus, while we hypothesize that the neural activity patterns
we show would be evident across multiple IC nuclei, this
remains an open question.

Nevertheless, we suggest that the similarity of our effects
across recordings reinforces the idea that human scalp record-
ings (that are by nature population responses) reflect similar
phenomena, and may indeed index timing jitter (cf. Lin et al.
2015). There is reason to believe this phenomenon extends
beyond the auditory system: some individuals with dyslexia
have poor visual perception in noise (Sperling et al. 2005),
and individuals with autism exhibit variable evoked potentials
across sensory modalities (Dinstein et al. 2012). Jittered
timing in sensory systems may underlie these phenomena
(Churchland et al. 2010) and, perhaps, impose constraints on
language development.

The ICc results present a framework to contextualize obser-
vations made in human listeners. It was estimated that 1ms of
timing jitter decreases the intertrial correlation by

Table 3. In humans, intertrial variability predicts early language
development.

Predictor ΔR2 β

Step 1 0.218
Sexa −0.200
Age 0.370**
Nonverbal intelligence 0.151

Step 2 0.165
Sexa −0.297*
Age 0.416***
Nonverbal intelligence 0.079
Intertrial variability 0.424***

Total R2 0.383

aDummy-coded, female = 0.

*P < 0.05; **P < 0.01; ***P = 0.01.
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approximately 0.3 (Pearson’s r). This facilitates new under-
standing of work in humans that establishes group differences
with regards to intertrial variability. For example, Anderson
et al. (2012) reported that older adults with normal hearing had
intertrial correlations 0.15 lower than young adults in response
to speech in quiet. Based on our animal model, this corre-
sponds to roughly 0.5ms of timing jitter in ICc. Hornickel and
Kraus (2013) reported that children with high versus low read-
ing achievement had a similar split in terms of their FFR inter-
trial correlations. In an intervention study, Hornickel et al.
(2012) investigated the use of classroom assistive listening
devices in children with dyslexia; they reported gains in inter-
trial correlations of up 0.15, which again suggests a decrease in
timing jitter of about 0.5ms. Future work can use techniques
such as computational modeling to estimate the point at which
the jitter becomes sufficiently excessive to ablate an averaged
scalp-recorded potential (Starr et al. 2003).

Stimulus-Driven Factors: Dynamic Speech Features in
Noise

Neural response variability and timing jitter differed markedly
in different time regions of the response. Responses to the
vowel were most stable, followed by responses to the conson-
ant transition, followed by responses to the consonant onset.
These effects of stimulus features became more pronounced
with the addition of background noise. These results align with
perceptual and neurophysiological studies that document the
acoustic vulnerability of transient speech features, especially in
noise.

For example, perceptual studies show that children and
adults have more trouble recognizing consonants in noise than
they do vowels (Miller and Nicely 1955; Cutler et al. 2004; Nishi
et al. 2010). Similar observations have been made in neuro-
physiological investigations (Cunningham et al. 2002; White-
Schwoch, et al. 2015a); our results are consistent with the
hypothesis that noise disrupts the neural coding of these tran-
sient cues in the subcortical auditory system. As compared
with consonants, vowels are periodic, of longer duration, and
have a higher amplitude, making them easier to perceive and
lock onto, and conferring a higher SNR ratio when background
noise is added. These differences are evident in Figure 1, where
the [da] stimulus is illustrated. The vowel is the periodic seg-
ment of the stimulus, which is higher in peak intensity than
the onset or CV transition; thus, when background noise was
added, the vowel segment of the stimulus had a higher SNR.

Together, these acoustic factors likely contribute to the
effects we observed, and, crucially, we show that midbrain cod-
ing is more variable when the acoustic input is compromised.
This variability may blur the representation of these features in
noise, undermining their intelligibility. It should, however, be
noted that we only employed a single instance of the sound
[da]; a next step for this work is to determine the generality of
our findings across other of speech tokens and listening condi-
tions (such as different types of background noise), in addition
to more complex syllables and words. More complex stimuli
could also disentangle onset coding from CV transition and
vowel coding (such as comparing [da] to [ada]; cf. Cunningham
et al. 2002; Cutler et al. 2004). Noteworthy is that previous find-
ings from rat IC and auditory cortex suggest a shared spike-
timing code across consonants, including voiced and unvoiced
stops, liquids, fricatives, nasals, and glides (Engineer et al. 2008;
Ranasinghe et al. 2013). In contrast, recordings from rat audi-
tory cortex suggest that spike count (not variability) codes

vowel sounds (Perez et al. 2013). It is plausible that background
noise disrupts the precision of timing information while pre-
serving (if not increasing) overall spike count, thereby leaving
vowel coding relatively unaffected. This hypothesis can be
tested with respect to variability and jitter in IC in future work
employing a more diverse stimulus set.

Local Factors: Inhibitory and Excitatory
Neurotransmission

One hypothesis to explain central processing bottlenecks that
constrain auditory processing comes from the literature on
auditory aging. Rodent models document extensive and pro-
found declines in inhibitory neurotransmitter receptors (both γ-
Aminobutyric acid [GABA] and glycine receptors) throughout
the auditory neuraxis, including in IC (Milbrandt et al. 1997;
Walton et al. 1998; Tadros et al. 2007). In the aged rhesus
macaque, Engle et al. (2014) document increases in parvalbu-
min (PV) in ICc. PV is a calcium-binding protein that is
expressed by GABAergic and glycinergic neurons; this up-
regulation may compensate for the overall decrease in inhibi-
tory activity in IC. Caspary and colleagues (2008) argue that
age-related loss of GABAergic receptors, in particular, may be
responsible for many of the speech understanding difficulties
older adults experience. There is also evidence that GABAergic
input is necessary to encode dynamic frequency content, and
that it mediates the variability observed in first-spike latency in
IC (Park and Pollak 1993). In addition, auditory training in a rat
model of aging causes activity-driven increases in inhibitory
neurotransmitter function commensurate with more consist-
ent spike timing in auditory cortex (de Villers-Sidani et al.
2010).

The timing jitter we document in response to fast-changing
sounds in noise is evocative of evidence in humans that sug-
gest difficulty understanding fast-changing sounds, especially
in noisy environments (Gordon-Salant and Fitzgibbons 1993;
Pichora-Fuller et al. 2007; White-Schwoch et al. 2015a). We
speculate that in disordered systems (including older adults
and children with language impairment) excessive jitter may
be due to a loss, or abnormal development, of inhibition.

Less is known about neuropharmacological expression in
the central auditory systems of animal models of language
impairment. Wright and Zecker (2004) propose a model
whereby maturational delay in central processing underlies
developmental disorders of auditory processing and language.
Sanchez et al. (2015) suggest the number and/or distribution of
N-methyl-D-asparate receptors (NMDA-Rs) mediates spike-
timing variability in brainstem and midbrain, and note that
application of an NMDA-Rs agonist reduces the number of
action potentials in response to sound onsets (Sanchez et al.
2007). Glutamate, an excitatory neurotransmitter, binds to
NMDA-Rs. NMDA-Rs are down-regulated maturationally in IC,
and eventually fast-latency subunits proliferate. Maturational
delays in this process may lead to abnormal neural firing in
response to speech, which we speculate affects language devel-
opment. Thus, one possibility is that poor processing due to
language impairment may be attributed more to problems of
excitation, whereas processing bottlenecks due to aging may be
rooted in aberrant inhibitory function.

Perhaps more likely a balance of excitation and inhibition
is necessary for consistent neural firing (Wehr and Zador
2003), especially in response to fast-changing sounds in noise.
This view is consistent with evidence for abnormal concen-
trations of both GABA and glutamate in children with
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neurodevelopmental disorders (Edden et al. 2012; Pugh et al.
2014; Braat and Kooy 2015).

Utility of the Animal Model

Response patterns measured in IC, at the cortical surface, and
in humans were broadly similar as a function of stimulus fea-
tures (consonant vs. vowel and quiet vs. noise). To our knowl-
edge, this is the first direct comparison of the speech-evoked
FFR in humans and an animal model using identical stimuli.
While there were differences in response properties across the
three sites (Fig. 3), it is important to emphasize the similarities
because they hint at the biological origins of the FFR: our
results are consistent with the hypothesis that the FFR reflects
IC activity (Chandrasekaran and Kraus 2010). This was observed
when near-field IC activity was compared with surface record-
ings in the animal model that were filtered for the FFR spec-
trum, and when the two were compared with recordings in
humans. It should be noted, however, that this evidence is cor-
relational, and future work employing techniques such as cool-
ing and lesioning will help explore this hypothesis more
thoroughly.

Listening Experience and Language Impairment

The auditory system is highly interconnected (Kral and
Eggermont 2007) and throughout life the inferior colliculi are
tuned bidirectionally from modulatory ascending and descend-
ing input. The descending fibers are thought to mediate func-
tional remodeling in certain tasks (Bajo et al. 2010). Our view is
that auditory learning is the product of coordinated input from
cognitive, sensory, and reward networks, and we are therefore
motivated by a conceptual framework whereby the FFR reflects
an individual’s life in sound—for better or for worse—and suc-
cess in everyday speech communication (Kraus and White-
Schwoch 2015; White-Schwoch and Kraus forthcoming). In
humans, auditory training has been associated with increased
intertrial stability of the FFR. This includes music training,
second language experience, and the use of assistive listening
devices (reviewed in Kraus and Nicol 2014; Kraus and White-
Schwoch forthcoming). We now attribute these gains to
decreases in trial-by-trial timing variability of neural activity
patterns.

It has long been argued that imprecise timing in the central
auditory system is a major cause of language impairment
(Tallal and Piercy 1973; Nagarajan et al. 1999; Ahissar et al.
2000; Benasich and Tallal 2002). A challenge to this view, how-
ever, has been the difficulty of directly comparing neurophysio-
logical activity in humans with language disorders and animal
models. The approach presented here may offer an avenue to
bridge this gap. For example, Centanni and colleagues (2014a,
2014b) found timing variability in auditory cortex in response
to speech sounds—a variability evocative of that we document
in ICc, and what has been demonstrated in humans with read-
ing impairment using scalp recordings (Hornickel and Kraus
2013; White-Schwoch et al. 2015b). Some cases of dyslexia can
be attributed to mutations in the gene KIAA0319 (Cope et al.
2005; Galaburda et al. 2006), and Centanni et al. used RNA inter-
ference to reduce expression of the rat homolog Kiaa0319. This
gene is noteworthy because it is expressed in both brainstem
and cortex, and its knockdown is associated with abnormalities
in axonal migration (Platt et al. 2013) and dendritic morphology
and orientation (Peschansky et al. 2009). Given the similarity of
FFR activity patterns between the animal model and humans,

studies of language impairment could compare IC activity and
the FFR in animal models such as the aforementioned Kiaa0319
knockdown rat directly to humans using genetic markers.

Limitations and Future Directions

It is important to point out some technical differences between
the animal and human recordings. The animals were anesthe-
tized for the recording session, and the anesthetic may have
affected response properties; ketamine is an NMDA-R antagon-
ist and so may have contributed to variability in first-spike
latency. However, Ter-Mikaelian et al. (2007) have shown that
isoflurane, also an NMDA-R antagonist, minimally affects tim-
ing variability in IC. In addition, there were differences in the
stimulus delivery: there was a slightly faster presentation rate
for the animal component, and the ear inserts used in the ani-
mal component had a broader frequency response. Yet despite
these differences a remarkable similarity was established
between responses recorded from ICc in guinea pigs and the
scalp in humans.

We note that both the animal and human subjects repre-
sented relatively homogenous cohorts, although individual dif-
ferences in human listeners were linked to language
development. Still, future work should evaluate intertrial tim-
ing jitter as a function of listening experience and environ-
ment. Although previous work suggests that a modified milieu
and/or explicit training alters response properties (Engineer
et al. 2004; Centanni et al. 2014b), the link is missing from the
current study. An additional open question is the relationship
between timing jitter in IC and behavior in awake and function-
ing animals. These questions represent exciting avenues for
future work that can further our understanding of phenomena
observed in human listeners.

Finally, an important consideration is that any interspecies
comparison is inherently correlational. Moreover, many factors
contribute to language development, and our results indicate
that scalp-recorded FFR variability accounted for 16.5% of
unique variance in phonological skills. Additionally, in the ani-
mal model, intertrial jitter accounted for 19.5% of variance in
the evoked response morphology after removing the influence
of stimulus-related factors and the tuning of the recording site.
We also note that stimulus regions and background noise
strongly affected both variability measures (correlation and jit-
ter). When not controlling for stimulus factors, jitter and vari-
ability share 73.2% variance; additionally, both jitter and
variability relate to phase-locking across frequencies.
Therefore, results from human and animal data reflect a chain
of moderately correlated phenomena, and FFR variability
viewed at the scalp is likely also influenced by factors other
than jitter. Future work should consider how these factors, in
combination with many more, emerge in scalp-recorded poten-
tials, and the developmental impact of variability on language
development.

Conclusion
We show that timing variability in auditory midbrain con-
strains the neural coding of speech, and that transient and
dynamic speech cues in noise are especially susceptible to this
jitter. In turn, we show a consistent and profound relationship
between timing jitter and the trial-to-trial stability of neural
coding: less-jittered responses are morphologically more simi-
lar across trials. In humans, the degree of intertrial variability
(and, presumably, jitter) relates to early language skills.
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Together, this report defines timing jitter as a mechanism con-
tributing to the phenomenon of variable auditory processing
documented in humans with listening difficulties, including
children with language impairment and older adults.
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